首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1599篇
  免费   107篇
  1706篇
  2023年   7篇
  2022年   16篇
  2021年   43篇
  2020年   26篇
  2019年   22篇
  2018年   33篇
  2017年   35篇
  2016年   59篇
  2015年   80篇
  2014年   94篇
  2013年   123篇
  2012年   146篇
  2011年   134篇
  2010年   84篇
  2009年   71篇
  2008年   101篇
  2007年   82篇
  2006年   104篇
  2005年   72篇
  2004年   90篇
  2003年   74篇
  2002年   60篇
  2001年   9篇
  2000年   8篇
  1999年   13篇
  1998年   10篇
  1997年   5篇
  1996年   7篇
  1995年   14篇
  1994年   7篇
  1993年   9篇
  1992年   8篇
  1991年   8篇
  1990年   7篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   5篇
  1980年   3篇
  1979年   4篇
  1977年   3篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1961年   1篇
  1959年   1篇
排序方式: 共有1706条查询结果,搜索用时 9 毫秒
51.
Human monoclonal antibodies are promising agents for the development of more selective anticancer therapeutics. However, the tumor-targeting efficiency of most anticancer antibodies is severely limited by their poor penetration into the tumor mass. Recent studies have shown that a peptide derived from the HIV TAT protein could improve the distribution of cytoplasmic reporter proteins when administered systemically as fusion proteins or cross-linked chimeras. In this article, we tested by quantitative biodistribtution analysis whether conjugation to TAT peptides could improve the tumor targeting properties of scFv(L19)-Cys: an engineered human antibody fragment specific for the ED-B domain of fibronectin, a marker located in the modified extracellular matrix surrounding tumor neovasculature. Our results show that TAT peptides, consisting either of L-amino acids or D-amino acids, can efficiently transduce target cells when conjugated to fluorophores and/or antibody fragments, suggesting a receptor-independent cell entry mechanism. However, conjugation of scFv(L19)-Cys to TAT peptides resulted in a severely reduced tumor targeting performance compared to the unconjugated antibody, as measured in murine F9 teratocarcinoma-bearing mice, after intravenous injection of the radiolabeled antibody preparations. Our results outline the usefulness of TAT peptides for the efficient in vitro transduction of cells with globular proteins. In particular, the use of TAT peptides composed of D-amino acids may significantly reduce proteolytic degradation. At the same time, the poor biodistribution properties of antibody-TAT conjugates cast doubts over the applicability of this methodology for the delivery of biopharmaceuticals in vivo.  相似文献   
52.
53.
The focus of this microcosm study was to monitor the performances of 17 butane-utilizing microcosms during a long-term (100–250 days) aerobic cometabolic depletion of chloroform (CF). The depletion of the contaminant began after a lag-time variable between 0 and 23 days. All microcosms quickly reached a pseudo steady-state condition, in terms of biomass concentration (with an average of 9.3 × 106 CFU ml–1), chloroform depletion rate (5 mol l–1 d–1) and butane utilization rate (730 mol l–1 d–1). After about 100 days of CF depletion, a sudden 5- to 7-fold increase of the chloroform rate was observed in two microcosms, where the highest amount of contaminant had been depleted. In one of these high-performing microcosms, an experiment of chloroform depletion in the absence of butane resulted in the depletion of a surprisingly high amount of contaminant (765 molCF kgdry soil–1 in 2 months) and in a marked selection of a single bacterial strain. Bioaugmentation assays conducted with the biomass selected in this microcosm and with a pure culture of the selected strain immediately resulted in very high chloroform depletion rates. Preliminary results of a study conducted with resting cells of the selected strain indicated that it can degrade chloroform concentrations up to 119 M (14.2 mg l–1) without any sign of substrate toxicity, and that it is able to transform vinyl chloride and 1,1,2-trichloroethane.  相似文献   
54.
The motor unit twitch torque is modified by sustained contraction, but the association to changes in muscle fiber electrophysiological properties is not fully known. Thus twitch torque, muscle fiber conduction velocity, and action potential properties of single motor units were assessed in 11 subjects following an isometric submaximal contraction of the tibialis anterior muscle until endurance. The volunteers activated a target motor unit at the minimum discharge rate in eight 3-min-long contractions, three before and five after an isometric contraction at 40% of the maximal torque, sustained until endurance. Multichannel surface electromyogram signals and joint torque were averaged with the target motor unit potential as trigger. Discharge rate (mean +/- SE, 6.6 +/- 0.2 pulses/s) and interpulse interval variability (33.3 +/- 7.0%) were not different in the eight contractions. Peak twitch torque and recruitment threshold increased significantly (93 +/- 29 and 12 +/- 5%, P <0.05) in the contraction immediately after the endurance task with respect to the preendurance values (0.94 +/- 0.26 mN.m and 3.7 +/- 0.5% of the maximal torque), whereas time to peak of the twitch torque did not change (74.4 +/- 10.1 ms). Muscle fiber conduction velocity decreased and action potential duration increased in the contraction after the endurance (6.3 +/- 1.8 and 9.8 +/- 1.8%, respectively, P <0.05; preendurance values, 3.9 +/- 0.2 m/s and 11.1 +/- 0.8 ms), whereas the surface potential peak-to-peak amplitude did not change (27.1 +/- 3.1 microV). There was no significant correlation between the relative changes in muscle fiber conduction velocity or surface potential duration and in peak twitch torque (R2= 0.04 and 0.10, respectively). In conclusion, modifications in peak twitch torque of low-threshold motor units with sustained contraction are mainly determined by mechanisms not related to changes in action potential shape and in its propagation velocity.  相似文献   
55.
The response of a population of neurons to time-varying synaptic inputs can show a rich phenomenology, hardly predictable from the dynamical properties of the membrane’s inherent time constants. For example, a network of neurons in a state of spontaneous activity can respond significantly more rapidly than each single neuron taken individually. Under the assumption that the statistics of the synaptic input is the same for a population of similarly behaving neurons (mean field approximation), it is possible to greatly simplify the study of neural circuits, both in the case in which the statistics of the input are stationary (reviewed in La Camera et al. in Biol Cybern, 2008) and in the case in which they are time varying and unevenly distributed over the dendritic tree. Here, we review theoretical and experimental results on the single-neuron properties that are relevant for the dynamical collective behavior of a population of neurons. We focus on the response of integrate-and-fire neurons and real cortical neurons to long-lasting, noisy, in vivo-like stationary inputs and show how the theory can predict the observed rhythmic activity of cultures of neurons. We then show how cortical neurons adapt on multiple time scales in response to input with stationary statistics in vitro. Next, we review how it is possible to study the general response properties of a neural circuit to time-varying inputs by estimating the response of single neurons to noisy sinusoidal currents. Finally, we address the dendrite–soma interactions in cortical neurons leading to gain modulation and spike bursts, and show how these effects can be captured by a two-compartment integrate-and-fire neuron. Most of the experimental results reviewed in this article have been successfully reproduced by simple integrate-and-fire model neurons.  相似文献   
56.
The R1 allele confers on potato a race-specific resistance to Phytophthora infestans. The corresponding genetic locus maps on chromosome V in a region in which several other resistance genes are also located. As part of a strategy for cloning R1, a high-resolution genetic map was constructed for the segment of chromosome V that is bordered by the RFLP loci GP21 and GP179 and includes the R1 locus. Bulked segregant analysis and markers based on amplified fragment length polymorphisms (AFLP markers) were used to select molecular markers closely linked to R1. Twenty-nine of approximately 3200 informative AFLP loci displayed linkage to the R1 locus. Based on the genotypic analysis of 461 gametes, eight loci mapped within the GP21–GP179 interval. Two of those could not be seperated from R1 by recombination. For genotyping large numbers of plants with respect to the flanking markers GP21 and GP179 PCR based assays were also developed which allowed marker-assisted selection of plants with genotypes Rr and rr and of recombinant plants.  相似文献   
57.
58.
Epidermal growth factor receptor (EGFR), member of the human epidermal growth factor receptor (HER) family, plays a critical role in regulating multiple cellular processes including proliferation, differentiation, cell migration and cell survival. Deregulation of the EGFR signaling has been found to be associated with the development of a variety of human malignancies including lung, breast, and ovarian cancers, making inhibition of EGFR the most promising molecular targeted therapy developed in the past decade against cancer. Human non small cell lung cancers (NSCLC) with activating mutations in the EGFR gene frequently experience significant tumor regression when treated with EGFR tyrosine kinase inhibitors (TKIs), although acquired resistance invariably develops. Resistance to TKI treatments has been associated to secondary mutations in the EGFR gene or to activation of additional bypass signaling pathways including the ones mediated by receptor tyrosine kinases, Fas receptor and NF-kB. In more than 30–40% of cases, however, the mechanisms underpinning drug-resistance are still unknown. The establishment of cellular and mouse models can facilitate the unveiling of mechanisms leading to drug-resistance and the development or validation of novel therapeutic strategies aimed at overcoming resistance and enhancing outcomes in NSCLC patients. Here we describe the establishment and characterization of EGFR TKI-resistant NSCLC cell lines and a pilot study on the effects of a combined MET and EGFR inhibitors treatment. The characterization of the erlotinib-resistant cell lines confirmed the association of EGFR TKI resistance with loss of EGFR gene amplification and/or AXL overexpression and/or MET gene amplification and MET receptor activation. These cellular models can be instrumental to further investigate the signaling pathways associated to EGFR TKI-resistance. Finally the drugs combination pilot study shows that MET gene amplification and MET receptor activation are not sufficient to predict a positive response of NSCLC cells to a cocktail of MET and EGFR inhibitors and highlights the importance of identifying more reliable biomarkers to predict the efficacy of treatments in NSCLC patients resistant to EGFR TKI.  相似文献   
59.
We have analyzed gene regulation of the Lhc supergene family in poplar (Populus spp.) and Arabidopsis (Arabidopsis thaliana) using digital expression profiling. Multivariate analysis of the tissue-specific, environmental, and developmental Lhc expression patterns in Arabidopsis and poplar was employed to characterize four rarely expressed Lhc genes, Lhca5, Lhca6, Lhcb7, and Lhcb4.3. Those genes have high expression levels under different conditions and in different tissues than the abundantly expressed Lhca1 to 4 and Lhcb1 to 6 genes that code for the 10 major types of higher plant light-harvesting proteins. However, in some of the datasets analyzed, the Lhcb4 and Lhcb6 genes as well as an Arabidopsis gene not present in poplar (Lhcb2.3) exhibited minor differences to the main cooperative Lhc gene expression pattern. The pattern of the rarely expressed Lhc genes was always found to be more similar to that of PsbS and the various light-harvesting-like genes, which might indicate distinct physiological functions for the rarely and abundantly expressed Lhc proteins. The previously undetected Lhcb7 gene encodes a novel plant Lhcb-type protein that possibly contains an additional, fourth, transmembrane N-terminal helix with a highly conserved motif. As the Lhcb4.3 gene seems to be present only in Eurosid species and as its regulation pattern varies significantly from that of Lhcb4.1 and Lhcb4.2, we conclude it to encode a distinct Lhc protein type, Lhcb8.  相似文献   
60.
Tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are the only two heme proteins that catalyze the oxidation reaction of tryptophan (Trp) to N-formylkynurenine. While human IDO is able to oxidize both L- and D-Trp, human TDO (hTDO) displays major specificity for L-Trp. In this work, we aim to interrogate the molecular basis for the substrate stereoselectivity of hTDO. Our previous molecular dynamics simulation studies of Xanthomonas campestris TDO (xcTDO) showed that a hydrogen bond between T254 (T342 in hTDO) and the ammonium group of the substrate is present in the L-Trp-bound enzyme, but not in the D-Trp-bound enzyme. The fact that this is the only notable structural alteration induced by the change in the stereo structure of the substrate prompted us to produce and characterize the T342A mutant of hTDO to evaluate the structural role of T342 in controlling the substrate stereoselectivity of the enzyme. The experimental results indicate that the mutation only slightly perturbs the global structural properties of the enzyme but totally abolishes the substrate stereoselectivity. Molecular dynamics simulations of xcTDO show that T254 controls the substrate stereoselectivity of the enzyme by (i) modulating the hydrogen bonding interaction between the NH(3)(+) group and epoxide oxygen of the ferryl-indole 2,3-epoxide intermediate of the enzyme and (ii) regulating the dynamics of two active site loops, loop(250-260) and loop(117-130), critical for substrate binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号