全文获取类型
收费全文 | 93篇 |
免费 | 13篇 |
国内免费 | 1篇 |
专业分类
107篇 |
出版年
2017年 | 2篇 |
2016年 | 1篇 |
2015年 | 3篇 |
2014年 | 4篇 |
2013年 | 7篇 |
2012年 | 2篇 |
2011年 | 4篇 |
2010年 | 2篇 |
2009年 | 3篇 |
2008年 | 6篇 |
2007年 | 4篇 |
2006年 | 6篇 |
2005年 | 3篇 |
2004年 | 4篇 |
2003年 | 4篇 |
2002年 | 4篇 |
2001年 | 4篇 |
2000年 | 3篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 6篇 |
1990年 | 6篇 |
1989年 | 3篇 |
1988年 | 3篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1974年 | 2篇 |
1973年 | 3篇 |
1970年 | 2篇 |
1969年 | 2篇 |
1968年 | 2篇 |
1967年 | 1篇 |
1966年 | 2篇 |
排序方式: 共有107条查询结果,搜索用时 15 毫秒
91.
Wang J Caruano-Yzermans A Rodriguez A Scheurmann JP Slunt HH Cao X Gitlin J Hart PJ Borchelt DR 《The Journal of biological chemistry》2007,282(1):345-352
A subset of superoxide dismutase 1 (Cu/Zn-SOD1) mutants that cause familial amyotrophic lateral sclerosis (FALS) have heightened reactivity with (-)ONOO and H(2)O(2) in vitro. This reactivity requires a copper ion bound in the active site and is a suggested mechanism of motor neuron injury. However, we have found that transgenic mice that express SOD1-H46R/H48Q, which combines natural FALS mutations at ligands for copper and which is inactive, develop motor neuron disease. Using a direct radioactive copper incorporation assay in transfected cells and the established tools of single crystal x-ray diffraction, we now demonstrate that this variant does not stably bind copper. We find that single mutations at copper ligands, including H46R, H48Q, and a quadruple mutant H46R/H48Q/H63G/H120G, also diminish the binding of radioactive copper. Further, using native polyacrylamide gel electrophoresis and a yeast two-hybrid assay, the binding of copper was found to be related to the formation of the stable dimeric enzyme. Collectively, our data demonstrate a relationship between copper and assembly of SOD1 into stable dimers and also define disease-causing SOD1 mutants that are unlikely to robustly produce toxic radicals via copper-mediated chemistry. 相似文献
92.
Baruch MC Warburton DE Bredin SS Cote A Gerdt DW Adkins CM 《Nonlinear biomedical physics》2011,5(1):1-15
Background
Markers of temporal changes in central blood volume are required to non-invasively detect hemorrhage and the onset of hemorrhagic shock. Recent work suggests that pulse pressure may be such a marker. A new approach to tracking blood pressure, and pulse pressure specifically is presented that is based on a new form of pulse pressure wave analysis called Pulse Decomposition Analysis (PDA). The premise of the PDA model is that the peripheral arterial pressure pulse is a superposition of five individual component pressure pulses, the first of which is due to the left ventricular ejection from the heart while the remaining component pressure pulses are reflections and re-reflections that originate from only two reflection sites within the central arteries. The hypothesis examined here is that the PDA parameter T13, the timing delay between the first and third component pulses, correlates with pulse pressure. T13 was monitored along with blood pressure, as determined by an automatic cuff and another continuous blood pressure monitor, during the course of lower body negative pressure (LBNP) sessions involving four stages, -15 mmHg, -30 mmHg, -45 mmHg, and -60 mmHg, in fifteen subjects (average age: 24.4 years, SD: 3.0 years; average height: 168.6 cm, SD: 8.0 cm; average weight: 64.0 kg, SD: 9.1 kg).Results
Statistically significant correlations between T13 and pulse pressure as well as the ability of T13 to resolve the effects of different LBNP stages were established. Experimental T13 values were compared with predictions of the PDA model. These interventions resulted in pulse pressure changes of up to 7.8 mmHg (SE = 3.49 mmHg) as determined by the automatic cuff. Corresponding changes in T13 were a shortening by -72 milliseconds (SE = 4.17 milliseconds). In contrast to the other two methodologies, T13 was able to resolve the effects of the two least negative pressure stages with significance set at p < 0.01.Conclusions
The agreement of observations and measurements provides a preliminary validation of the PDA model regarding the origin of the arterial pressure pulse reflections. The proposed physical picture of the PDA model is attractive because it identifies the contributions of distinct reflecting arterial tree components to the peripheral pressure pulse envelope. Since the importance of arterial pressure reflections to cardiovascular health is well known, the PDA pulse analysis could provide, beyond the tracking of blood pressure, an assessment tool of those reflections as well as the health of the sites that give rise to them. 相似文献93.
Caruano-Yzermans AL Bartnikas TB Gitlin JD 《The Journal of biological chemistry》2006,281(19):13581-13587
The copper chaperone for superoxide dismutase (CCS) is an intracellular metallochaperone required for incorporation of copper into the essential antioxidant enzyme copper/zinc superoxide dismutase (SOD1). Nutritional studies have revealed that the abundance of CCS is inversely proportional to the dietary and tissue copper content. To determine the mechanisms of copper-dependent regulation of CCS, copper incorporation into SOD1 and SOD1 enzymatic activity as well as CCS abundance and half-life were determined after metabolic labeling of CCS-/- fibroblasts transfected with wild-type or mutant CCS. Wild-type CCS restored SOD1 activity in CCS-/- fibroblasts, and the abundance of this chaperone in these cells was inversely proportional to the copper content of the media, indicating that copper-dependent regulation of CCS is entirely post-translational. Although mutational studies demonstrated no role for CCS Domain I in this copper-dependent regulation, similar analysis of the CXC motif in Domain III revealed a critical role for these cysteine residues in mediating copper-dependent turnover of CCS. Further mutational studies revealed that this CXC-dependent copper-mediated turnover of CCS is independent of the mechanisms of delivery of copper to SOD1 including CCS-SOD1 interaction. Taken together these data demonstrate a mechanism determining the abundance of CCS that is competitive with the process of copper delivery to SOD1, revealing a unique post-translational component of intracellular copper homeostasis. 相似文献
94.
95.
Leonid Gitlin Loralyn Benoit Christina Song Marina Cella Susan Gilfillan Michael J. Holtzman Marco Colonna 《PLoS pathogens》2010,6(1)
The early host response to pathogens is mediated by several distinct pattern recognition receptors. Cytoplasmic RNA helicases including RIG-I and MDA5 have been shown to respond to viral RNA by inducing interferon (IFN) production. Previous in vitro studies have demonstrated a direct role for MDA5 in the response to members of the Picornaviridae, Flaviviridae and Caliciviridae virus families ((+) ssRNA viruses) but not to Paramyxoviridae or Orthomyxoviridae ((−) ssRNA viruses). Contrary to these findings, we now show that MDA5 responds critically to infections caused by Paramyxoviridae in vivo. Using an established model of natural Sendai virus (SeV) infection, we demonstrate that MDA5−/− mice exhibit increased morbidity and mortality as well as severe histopathological changes in the lower airways in response to SeV. Moreover, analysis of viral propagation in the lungs of MDA5−/− mice reveals enhanced replication and a distinct distribution involving the interstitium. Though the levels of antiviral cytokines were comparable early during SeV infection, type I, II, and III IFN mRNA expression profiles were significantly decreased in MDA5−/− mice by day 5 post infection. Taken together, these findings indicate that MDA5 is indispensable for sustained expression of IFN in response to paramyxovirus infection and provide the first evidence of MDA5-dependent containment of in vivo infections caused by (−) sense RNA viruses. 相似文献
96.
The poliovirus replication machinery can escape inhibition by an antiviral drug that targets a host cell protein 下载免费PDF全文
Viral replication depends on specific interactions with host factors. For example, poliovirus RNA replication requires association with intracellular membranes. Brefeldin A (BFA), which induces a major rearrangement of the cellular secretory apparatus, is a potent inhibitor of poliovirus RNA replication. Most aspects governing the relationship between viral replication complex and the host membranes remain poorly defined. To explore these interactions, we used a genetic approach and isolated BFA-resistant poliovirus variants. Mutations within viral proteins 2C and 3A render poliovirus resistant to BFA. In the absence of BFA, viruses containing either or both of these mutations replicated similarly to wild type. In the presence of BFA, viruses carrying a single mutation in 2C or 3A exhibited an intermediate-growth phenotype, while the double mutant was fully resistant. The viral proteins 2C and 3A have critical roles in both RNA replication and vesicle formation. The identification of BFA resistant mutants may facilitate the identification of cellular membrane-associated proteins necessary for induction of vesicle formation and RNA replication. Importantly, our data underscore the dramatic plasticity of the host-virus interactions required for successful viral replication. 相似文献
97.
98.
Transdominant human T-cell lymphotropic virus type I TAX1 mutant that fails to localize to the nucleus. 总被引:1,自引:5,他引:1 下载免费PDF全文
Human T-cell lymphotropic virus type I (HTLV-I) encodes a 40-kDa nuclear transactivating phosphoprotein, TAX1. The results presented in this study demonstrate that deletion of amino acids 2 through 59 of TAX1 (delta 58 TAX1) decreased transactivation of the HTLV-I long terminal repeat 10- to 20-fold. S1 nuclease analysis revealed that the decrease in transactivation of the HTLV-I long terminal repeat was associated with a lack of RNA synthesis. In contrast to the nuclear localization of the wild-type TAX1 protein, indirect immunofluorescence analysis demonstrated that delta 58 TAX1 failed to localize to the nucleus, indicating that the TAX1 nuclear localization sequence is present in amino acids 2 through 59. Cotransfection of wild-type and mutant TAX1 DNAs resulted in the cytoplasmic accumulation of TAX1 and a 25-fold decrease in transactivation. Although several possibilities which may account for this transdominant effect exist, we favor a model in which delta 58 TAX1 interferes with the nuclear localization of wild-type TAX1 protein, perhaps by forming heterodimer complexes. 相似文献
99.
100.
Biological processes in living cells are compartmentalized between lipid membranes. Integral membrane proteins often confer specific functions to these compartments and as such have a critical role in cellular metabolism and function. Cytochrome c oxidase is a macromolecular metalloprotein complex essential for the respiratory function of the cell. Elucidating the mechanisms of assembly of cytochrome c oxidase within the inner mitochondrial membrane represents a unique challenge for understanding metalloprotein biosynthesis. Elegant genetic experiments in yeast have defined several proteins required for copper delivery to cytochrome c oxidase. While the precise role of each of these proteins in copper incorporation remains unclear, recent studies have revealed that inherited mutations in two of these proteins can result in severe pathology in human infants in association with cytochrome c oxidase deficiency. Characterization of the molecular pathogenesis of these disorders offers new insights into the mechanisms of cellular copper metabolism and the role of these cytochrome c oxidase copper chaperones in human disease. 相似文献