首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   18篇
  2023年   4篇
  2022年   4篇
  2021年   6篇
  2020年   7篇
  2019年   7篇
  2018年   4篇
  2017年   5篇
  2016年   9篇
  2015年   15篇
  2014年   14篇
  2013年   23篇
  2012年   22篇
  2011年   24篇
  2010年   14篇
  2009年   10篇
  2008年   19篇
  2007年   17篇
  2006年   11篇
  2005年   9篇
  2004年   8篇
  2003年   9篇
  2002年   10篇
  2001年   11篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1995年   3篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   7篇
  1981年   1篇
  1980年   2篇
  1979年   6篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
  1962年   1篇
  1959年   3篇
排序方式: 共有341条查询结果,搜索用时 62 毫秒
71.
G Swarup  D L Garbers 《Biochemistry》1983,22(5):1102-1106
Porcine rod outer segment (ROS) proteins were phosphorylated in the presence of [gamma-32P]ATP and Mg2+, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and detected by autoradiography. The phosphorylation of rhodopsin, the major protein-staining band (Mr approximately 34 000-38 000), was markedly and specifically increased by exposure of rod outer segments to light; various guanine nucleotides (10 microM) including GMP, GDP, and GTP also specifically increased rhodopsin phosphorylation (up to 5-fold). Adenine nucleotides (cyclic AMP, AMP, and ADP at 10 microM) and 8-bromo-GMP (10 microM) or cyclic 8-bromo-GMP (10 microM) had no detectable stimulatory effect on rhodopsin phosphorylation. GTP increased the phosphorylation of rhodopsin at concentrations as low as 100 nM, and guanosine 5'-(beta, gamma-imidotriphosphate), a relatively stable analogue of GTP, was nearly as effective as GTP. Maximal stimulation of rhodopsin phosphorylation by GTP was observed at 2 microM. GMP and GDP were less potent than GTP. Both cyclic GMP and GMP were converted to GTP during the time period of the protein phosphorylation reaction, suggestive of a GTP-specific effect. Transphosphorylation of guanine nucleotides by [32P]ATP and subsequent utilization of [32P]GTP as a more effective substrate were ruled out as an explanation for the guanine nucleotide stimulation. With increasing concentrations of ROS proteins, the phosphorylation of rhodopsin was nonlinear, whereas in the presence of GTP (2 microM) linear increases in rhodopsin phosphorylation as a function of added ROS protein were observed. These results suggest that GTP stimulates the phosphorylation of rhodopsin by ATP and that a GTP-sensitive inhibitor (or regulator) of rhodopsin phosphorylation may be present in ROS.  相似文献   
72.
Summary In a pot culture study, copper addition to soil increased the crop yield only in presence of nitrogen. The latter increased the utilization of both native as well as applied copper but more that of applied. It also minimised the adverse effect of applied phosphorus on copper utilization. Phosphorus at the rate 45 ppm had the tendency of decreasing copper uptake by wheat if applied without nitrogen or with its low level.  相似文献   
73.
Jain N  Sudhakar Ch  Swarup G 《The FEBS journal》2007,274(17):4396-4407
Tumour necrosis factor-alpha (TNF-alpha) is a cytokine that is involved in many functions, including the inflammatory response, immunity and apoptosis. Some of the responses of TNF-alpha are mediated by caspase-1, which is involved in the production of the pro-inflammatory cytokines interleukin-1beta, interleukin-18 and interleukin-33. The molecular mechanisms involved in TNF-alpha-induced caspase-1 gene expression remain poorly defined, despite the fact that signaling by TNF-alpha has been well studied. The present study was undertaken to investigate the mechanisms involved in the induction of caspase-1 gene expression by TNF-alpha. Treatment of A549 cells with TNF-alpha resulted in an increase in caspase-1 mRNA and protein expression, which was preceded by an increase in interferon regulatory factor-1 and p73 protein levels. Caspase-1 promoter reporter was activated by the treatment of cells with TNF-alpha. Mutation of the interferon regulatory factor-1 binding site resulted in the almost complete loss of basal as well as of TNF-alpha-induced caspase-1 promoter activity. Mutation of the p53/p73 responsive site resulted in reduced TNF-alpha-induced promoter activity. Blocking of p73 function by a dominant negative mutant or by a p73-directed small hairpin RNA reduced basal as well as TNF-alpha-induced caspase-1 promoter activity. TNF-alpha-induced caspase-1 mRNA and protein levels were reduced when p73 mRNA was down-regulated by small hairpin RNA. Caspase-5 gene expression was induced by TNF-alpha, which was inhibited by the small hairpin RNA-mediated down-regulation of p73. Our results show that TNF-alpha induces p73 gene expression, which, together with interferon regulatory factor-1, plays an important role in mediating caspase-1 promoter activation by TNF-alpha.  相似文献   
74.
Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.  相似文献   
75.

Background and aims

Bioinoculants are commonly used for enhancing crop productivity but little information is available on their effect on key microbial communities such as those involved in the cycling of nitrogen, a major plant nutrient. Here we developed a formulation combining different bioinoculants (Bacillus megaterium, Pseudomonas fluorescens and Trichoderma harzianum) and examined their effects on both Cajanus cajan growth and N-cycling microorganisms.

Methods

Seven bioinoculant combinations were evaluated in pots under field conditions, and their effects on plant growth were measured using various biometric parameters. The abundances of the total bacterial and crenarchaeal communities along with those involved in N-cycling were monitored by qPCR at vegetative, pre-flowering, flowering and maturity stages of the crop.

Results

A significant increase in growth of C. cajan was observed when treated with mixture of three bioinoculants with dry biomass and grain yield increase by 330?% and 238?%, respectively. The combination of three bioinoculants also increased the abundance of nitrogen fixers and denitrifiers towards the flowering and maturity stages.

Conclusions

The consortium of three bioinoculants increased plant growth and grain yield of C. cajan. These bioinoculants also had a positive effect on the abundance of several N-cycling microbial communities stressing the importance of understanding non-target effects of bioinoculants together with their impact on plant growth.  相似文献   
76.
Protein phosphorylation on serine, threonine, and tyrosine is well established as a crucial regulatory posttranslational modification in eukaryotes. With the recent whole‐genome sequencing projects reporting the presence of serine/threonine kinases and two‐component proteins both in prokaryotes and eukaryotes, the importance of protein phosphorylation in archaea and bacteria is gaining acceptance. While conventional biochemical methods failed to obtain a snapshot of the bacterial phosphoproteomes, advances in MS methods have paved the way for in‐depth mapping of phosphorylation sites. Here, we present phosphoproteomes of two ecologically diverse non‐enteric Gram‐negative bacteria captured by a nanoLC‐MS‐based approach combined with a novel phosphoenrichment method. While the phosphoproteome data from the two species are not very similar, the results reflect high similarity to the previously published dataset in terms of the pathways the phosphoproteins belong to. This study additionally provides evidence to prior observations that protein phosphorylation is common in bacteria. Notably, phosphoproteins identified in Pseudomonas aeruginosa belong to motility, transport, and pathogenicity pathways that are critical for survival and virulence. We report, for the first time, that motility regulator A, probably acting via the novel secondary messenger cyclic diguanylate monophosphate, significantly affects protein phosphorylation in Pseudomonas putida.  相似文献   
77.
Recently we have reported the characterization of a novel single subunit 62-kDa polypeptide with ddNTP-sensitive DNA polymerase activity from the developing seeds of mungbean (Vigna radiata). The protein showed higher expression and activity level during nuclear endoreduplication stages of mungbean seeds and similarity with mammalian DNA polymerase β in many physicochemical properties.1 The enzyme was found to specifically interact with PCNA (proliferating cell nuclear antigen),2 and expressed in both meristematic and meiotic tissues. Functional assays have demonstrated binding of the enzyme to normal and mismatched DNA substrates and with fidelity DNA synthesis in moderately processive mode, suggesting probable involvement of the enzyme in both replication and recombination.3 Here we have discussed the position of mungbean DNA polymerase as a homologue of DNA Pol λ, one of the newly identified member of family-X DNA polymerase in plants and illustrated the functional relevance of this enzyme in maintaining the coordination between DNA replication and repair in plant genome.Key words: family X-DNA polymerase, DNA polymerase λ, mungbean DNA polymerase, BRCT module, DNA repair  相似文献   
78.
79.

Background  

Optineurin is a multifunctional protein involved in several functions such as vesicular trafficking from the Golgi to the plasma membrane, NF-κB regulation, signal transduction and gene expression. Mutations in optineurin are associated with glaucoma, a neurodegenerative eye disease that causes blindness. Genetic evidence suggests that the E50K (Glu50Lys) is a dominant disease-causing mutation of optineurin. However, functional alterations caused by mutations in optineurin are not known. Here, we have analyzed the role of optineurin in endocytic recycling and the effect of E50K mutant on this process.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号