首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   32篇
  2022年   3篇
  2021年   11篇
  2020年   11篇
  2019年   4篇
  2018年   14篇
  2017年   6篇
  2016年   18篇
  2015年   26篇
  2014年   22篇
  2013年   33篇
  2012年   27篇
  2011年   27篇
  2010年   11篇
  2009年   13篇
  2008年   10篇
  2007年   11篇
  2006年   19篇
  2005年   14篇
  2004年   9篇
  2003年   6篇
  2002年   12篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
  1984年   2篇
  1983年   6篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1969年   1篇
  1960年   1篇
排序方式: 共有340条查询结果,搜索用时 125 毫秒
201.
Flavonoids are ubiquitous polyphenolic compounds, found in vascular plants, which are endowed with a large variety of biological effects. Some of these effects have been assumed to result from interactions with the cell plasma membrane. In order to investigate the nature of these interactions a fluorescence study was performed with two flavonoids, currently used in one of the laboratories: apigenin and its homologous dimer amentoflavone. After preliminary assays with DPH in several types of phospholipid liposomes, the effects of these flavonoids on the membrane of mouse L929 fibroblasts were compared, using the non-permeant probe TMA-DPH. Amentoflavone, unlike apigenin, induced a static quenching effect, which denoted an important, but reversible, association of the molecule with the plasma membrane. In addition, amentoflavone treatment induced a dose-dependent increase in TMA-DPH fluorescence anisotropy, which could be interpreted as an increase in membrane lipidic order. For apigenin, the effect was much less important. Moreover, exploiting the capacity of TMA-DPH to label endocytic compartments, it was shown that, after association with the membrane, amentoflavone is not internalized into the cell. Possible correlations of these membrane effects with other biological properties are discussed.  相似文献   
202.
The nuclear lamina is a structure that lines the inner nuclear membrane. In metazoans, lamins are the primary structural components of the nuclear lamina and are involved in several processes. Eukaryotes that lack lamins have distinct proteins with homologous functions. Some years ago, a coiled-coil protein in Trypanosoma brucei, NUP-1, was identified as the major filamentous component of its nuclear lamina. However, its precise role has not been determined. We characterized a homologous protein in Trypanosoma cruzi, TcNUP-1, and identified its in vivo DNA binding sites using a chromatin immunoprecipitation assay. We demonstrate for the first time that TcNUP-1 associates with chromosomal regions containing large non-tandem arrays of genes encoding surface proteins. We therefore suggest that TcNUP-1 is a structural protein that plays an essential role in nuclear organization by anchoring T. cruzi chromosomes to the nuclear envelope.  相似文献   
203.
204.
The glutamate-rich protein (GLURP) is an exoantigen expressed in all stages of the Plasmodium falciparum life cycle in humans. Anti-GLURP antibodies can inhibit parasite growth in the presence of monocytes via antibody-dependent cellular inhibition (ADCI), and a major parasite-inhibitory region has been found in the N-terminal R0 region of the protein. Herein, we describe the antiplasmodial activity of anti-GLURP antibodies present in the sera from individuals naturally exposed to malaria in a Brazilian malaria-endemic area. The anti-R0 antibodies showed a potent inhibitory effect on the growth of P. falciparum in vitro, both in the presence (ADCI) and absence (GI) of monocytes. The inhibitory effect on parasite growth was comparable to the effect of IgGs purified from pooled sera from hyperimmune African individuals. Interestingly, in the ADCI test, higher levels of tumour necrosis factor alpha (TNF-α) were observed in the supernatant from cultures with higher parasitemias. Our data suggest that the antibody response induced by GLURP-R0 in naturally exposed individuals may have an important role in controlling parasitemia because these antibodies are able to inhibit the in vitro growth of P. falciparum with or without the cooperation from monocytes. Our results also indicate that TNF-α may not be relevant for the inhibitory effect on P. falciparum in vitro growth.  相似文献   
205.

Aims

This work investigated the effects of 3,4-methylenedioxybenzoyl-2-thienylhydrazone (LASSBio-294) treatment on the contractile response of soleus (SOL) muscle from rats submitted to myocardial infarction (MI).

Main methods

Following coronary artery ligation, LASSBio-294 (2 mg/kg, i.p.) or vehicle was administrated once daily for 4 weeks.

Key findings

The run time to fatigue for sham rats was 17.9 ± 2.6 min, and it was reduced to 3.3 ± 0.8 min (P < 0.05) in MI rats. In MI rats treated with LASSBio-294, the time to fatigue was 15.1 ± 3.6 min. During the contractile test, SOL muscles from sham rats showed a response of 7.12 ± 0.54 N/cm2 at 60 Hz, which was decreased to 5.45 ± 0.49 N/cm2 (P < 0.05) in MI rats. The contractility of SOL muscles from the MI-LASSBio-294 group was increased to 9.01 ± 0.65 N/cm2. At 16 mM caffeine, the contractility was reduced from 2.31 ± 0.33 to 1.60 ± 0.21 N/cm2 (P < 0.05) in the MI group. In SOL muscles from MI-LASSBio-294 rats, the caffeine response was increased to 2.62 ± 0.33 N/cm2. Moreover, SERCA2a expression in SOL muscles was decreased by 0.31-fold (31%) in the MI group compared to the Sham group (P < 0.05). In the MI-LASSBio-294 group, it was increased by 1.53-fold (153%) compared to the MI group (P < 0.05). Meanwhile, the nuclear density in SOL muscles was increased in the MI group compared to the Sham group. Treatment with LASSBio-294 prevented this enhancement of cellular infiltrate.

Significance

LASSBio-294 treatment prevented the development of muscular fatigue and improved exercise intolerance in rats submitted to MI.  相似文献   
206.

Background

Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1–7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1–7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF.

Methods/Main Results

Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1–7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1–7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle.

Conclusions

Exercise training causes a shift in RAS towards the Ang-(1–7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal muscle.  相似文献   
207.
The dorsomedial hypothalamus (DMH) and lateral/dorsolateral periaqueductal gray (PAG) are anatomically and functionally connected. Both the DMH and PAG depend on glutamatergic inputs for activation. We recently reported that removal of GABA-ergic tone in the unilateral DMH produces: asymmetry, that is, a right- (R-) sided predominance in cardiac chronotropism, and lateralization, that is, a greater increase in ipsilateral renal sympathetic activity (RSNA). In the current study, we investigated whether excitatory amino acid (EAA) receptors in the DMH–PAG pathway contribute to the functional interhemispheric difference. In urethane (1.2 to 1.4 g/kg, i.p.) anesthetized rats, we observed that: (i) nanoinjections of N-methyl D-aspartate (NMDA 100 pmol/100 nl) into the unilateral DMH produced the same right-sided predominance in the control of cardiac chronotropy, (ii) nanoinjections of NMDA into the ipsilateral DMH or PAG evoked lateralized RSNA responses, and (iii) blockade of EAA receptors in the unilateral DMH attenuated the cardiovascular responses evoked by injection of NMDA into either the R- or left- (L-) PAG. In awake rats, nanoinjection of kynurenic acid (1 nmol/100 nL) into the L-DMH or R- or L-PAG attenuated the tachycardia evoked by air stress. However, the magnitude of stress-evoked tachycardia was smallest when the EAA receptors of the R-DMH were blocked. We conclude that EAA receptors contribute to the right-sided predominance in cardiac chronotropism. This interhemispheric difference that involves EAA receptors was observed in the DMH but not in the PAG.  相似文献   
208.
The West Antarctic Peninsula (WAP) has been suffering an increase in its atmospheric temperature during the last 50 years, mainly associated with global warming. This increment of temperature trend associated with changes in sea-ice dynamics has an impact on organisms, affecting their phenology, physiology and distribution range. For instance, rapid demographic changes in Pygoscelis penguins have been reported over the last 50 years in WAP, resulting in population expansion of sub-Antarctic Gentoo penguin (P. papua) and retreat of Antarctic Adelie penguin (P. adeliae). Current global warming has been mainly associated with human activities; however these climate trends are framed in a historical context of climate changes, particularly during the Pleistocene, characterized by an alternation between glacial and interglacial periods. During the last maximal glacial (LGM∼21,000 BP) the ice sheet cover reached its maximum extension on the West Antarctic Peninsula (WAP), causing local extinction of Antarctic taxa, migration to lower latitudes and/or survival in glacial refugia. We studied the HRVI of mtDNA and the nuclear intron βfibint7 of 150 individuals of the WAP to understand the demographic history and population structure of P. papua. We found high genetic diversity, reduced population genetic structure and a signature of population expansion estimated around 13,000 BP, much before the first paleocolony fossil records (∼1,100 BP). Our results suggest that the species may have survived in peri-Antarctic refugia such as South Georgia and North Sandwich islands and recolonized the Antarctic Peninsula and South Shetland Islands after the ice sheet retreat.  相似文献   
209.
The bioactive lipid mediator leukotriene B4 (LTB4) greatly enhances phagocyte antimicrobial functions against a myriad of pathogens. In murine histoplasmosis, inhibition of the LT-generating enzyme 5-lypoxigenase (5-LO) increases the susceptibility of the host to infection. In this study, we investigated whether murine resistance or susceptibility to Histoplasma capsulatum infection is associated with leukotriene production and an enhancement of in vivo and/or in vitro antimicrobial effector function. We show that susceptible C57BL/6 mice exhibit a higher fungal burden in the lung and spleen, increased mortality, lower expression levels of 5-LO and leukotriene B4 receptor 1 (BLT1) and decreased LTB4 production compared to the resistant 129/Sv mice. Moreover, we demonstrate that endogenous and exogenous LTs are required for the optimal phagocytosis of H. capsulatum by macrophages from both murine strains, although C57BL/6 macrophages are more sensitive to the effects of LTB4 than 129/Sv macrophages. Therefore, our results provide novel evidence that LTB4 production and BLT1 signaling are required for a histoplasmosis-resistant phenotype.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号