首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   9篇
  50篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   9篇
  2014年   5篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
  1995年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
11.
12.
Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0–30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long‐term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively avoid degradation as well as deforestation.  相似文献   
13.
The analysis of 2 diallelic loci (M470V and T854T) and a microsatellite IVS8(T)n of the cystic fibrosis transmembrane conductance regulator (CFTR) gene has shown different haplotype distribution in Brazilian cystic fibrosis (CF) chromosomes carrying different CF mutations. The DeltaF508 mutation was in absolute linkage disequilibrium with 1-1 haplotype (M470V-T854T). Most of DeltaF508 chromosomes (84%) were found to carry the IVS8-9T. The most frequent haplotypes IVS8-7T and 2-1 (M470V-T854T) were found associated with Non-DeltaF508 mutations. Although there is a remarkable linkage disequilibrium between these markers with CFTR locus, the mutations R334W (7T-1-2 and 7T-2-1) and the 3120 + 1G --> A (7T-1-2 and 9T-1-2) are associated with two different haplotypes probably introduced in the Brazilian population by migration. These findings suggest that recombination events from the original haplotype and gene flow among different ethnic groups (sub-Saharan and Mediterranean) might have resulted in CF mutations associated with different haplotypes by independent introductions.  相似文献   
14.
15.
16.
17.
The absence of species composition among the indicators of restoration success, recommended for the Brazilian Atlantic Forest by Suganuma and Durigan, was criticized by Reid. In his critic, Reid argues that species composition can be (1) predictable from site history and restoration technique and (2) a surrogate for poor ecosystem functioning and lack of resilience. We disagree on the deterministic view behind the first argument, and the latter is still controversial. Even though, we recommended richness as a good indicator of ecosystem functioning instead of composition—which depends on the exhaustive labor of botanical identification.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号