首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   991篇
  免费   77篇
  1068篇
  2022年   14篇
  2021年   12篇
  2020年   9篇
  2019年   8篇
  2018年   16篇
  2017年   18篇
  2016年   27篇
  2015年   43篇
  2014年   42篇
  2013年   44篇
  2012年   63篇
  2011年   72篇
  2010年   43篇
  2009年   41篇
  2008年   43篇
  2007年   43篇
  2006年   50篇
  2005年   42篇
  2004年   44篇
  2003年   38篇
  2002年   38篇
  2001年   17篇
  2000年   9篇
  1999年   8篇
  1998年   6篇
  1997年   10篇
  1996年   14篇
  1995年   9篇
  1994年   6篇
  1993年   9篇
  1990年   9篇
  1989年   8篇
  1987年   10篇
  1986年   6篇
  1985年   10篇
  1984年   8篇
  1983年   12篇
  1981年   6篇
  1980年   8篇
  1979年   7篇
  1977年   8篇
  1976年   10篇
  1975年   7篇
  1974年   6篇
  1972年   6篇
  1969年   8篇
  1968年   7篇
  1962年   6篇
  1961年   6篇
  1958年   5篇
排序方式: 共有1068条查询结果,搜索用时 15 毫秒
101.
Sulfonylurea receptors (SURs) constitute the regulatory subunits of ATP-sensitive K+ channels (K(ATP) channels). SUR binds nucleotides and synthetic K(ATP) channel modulators, e.g. the antidiabetic sulfonylurea glibenclamide, which acts as a channel blocker. However, knowledge about naturally occurring ligands of SUR is very limited. In this study, we show that the plant phenolic compound trans-resveratrol can bind to SUR and displace binding of glibenclamide. Electrophysiological measurements revealed that resveratrol is a blocker of pancreatic SUR1/K(IR)6.2 K(ATP) channels. We further demonstrate that, like glibenclamide, resveratrol induces enhanced apoptosis. This was shown by analyzing different apoptotic parameters (cell detachment, nuclear condensation and fragmentation, and activities of different caspase enzymes). The observed apoptotic effect was specific to cells expressing the SUR1 isoform and was not mediated by the electrical activity of K(ATP) channels, as it was observed in human embryonic kidney 293 cells expressing SUR1 alone. Enhanced susceptibility to resveratrol was not observed in pancreatic beta-cells from SUR1 knock-out mice or in cells expressing the isoform SUR2A or SUR2B or the mutant SUR1(M1289T). Resveratrol was much more potent than glibenclamide in inducing SUR1-specific apoptosis. Treatment with etoposide, a classical inducer of apoptosis, did not result in SUR isoform-specific apoptosis. In conclusion, resveratrol is a natural SUR ligand that can induce apoptosis in a SUR isoform-specific manner. Considering the tissue-specific expression patterns of SUR isoforms and the possible effects of SUR mutations on susceptibility to apoptosis, these observations could be important for diabetes and/or cancer research.  相似文献   
102.
Modern bone samples were experimentally degraded by incubation into water at increased temperature and examined in terms of their collagen content, the stable C and N isotopic ratios, and the molar C/N ratio. The same analyses were carried out with archaeological human bone of varying age (300 up to 8000 years). The experimentally degraded samples exhibited changes of the collagen's integrity, which influence the stable isotope ratios. In the case of the archaeological material, a correlation between stable delta13C- and delta15N-values and collagen content could be demonstrated. The molar C:N ratio was no suitable criterion for the assessment of the state of preservation of extractable collagen.  相似文献   
103.
Modulation of neuronal excitability is believed to be an important mechanism of plasticity in the nervous system. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been postulated to regulate the ether à go-go (eag) potassium channel in Drosophila. Inhibition of CaMKII and mutation of the eag gene both cause hyperexcitability at the larval neuromuscular junction (NMJ) and memory formation defects in the adult. In this study, we identify a single site, threonine 787, as the major CaMKII phosphorylation site in Eag. This site can be phosphorylated by CaMKII both in a heterologous cell system and in vivo at the larval NMJ. Expression of Eag in Xenopus oocytes was used to assess the function of phosphorylation. Injection of either a specific CaMKII inhibitor peptide or lavendustin C, another CaMKII inhibitor, reduced Eag current amplitude acutely. Mutation of threonine 787 to alanine also reduced amplitude. Moreover, both CaMKII inhibition and the alanine mutation accelerated inactivation. The reduction in current amplitudes and the accelerated inactivation of dephosphorylated Eag channels would result in decreased outward potassium currents and hyperexcitability at presynaptic terminals and, thus, are consistent with the NMJ phenotype observed when CaMKII is inhibited. These results show that Eag is a substrate of CaMKII and suggest that direct modulation of potassium channels may be an important function of this kinase.  相似文献   
104.
MDC9 (ADAM9/meltrin gamma) is a widely expressed and catalytically active metalloprotease-disintegrin protein that has been implicated in the ectodomain cleavage of heparin-binding epidermal growth factor-like growth factor (HB-EGF) and as an alpha secretase for the amyloid precursor protein. In this study, we evaluated the expression of MDC9 during development and generated mice lacking MDC9 (mdc9(-/-) mice) to learn more about the function of this protein during development and in adults. During mouse development, MDC9 mRNA is ubiquitously expressed, with particularly high expression levels in the developing mesenchyme, heart and brain. Despite the ubiquitous expression of MDC9, mdc9(-/-) mice appear to develop normally, are viable and fertile, and do not have any major pathological phenotypes compared to wild-type mice. Constitutive and stimulated ectodomain shedding of HB-EGF is comparable in embryonic fibroblasts isolated from mdc9(-/-) and wild-type mice, arguing against an essential role of MDC9 in HB-EGF shedding in these cells. Furthermore, there were no differences in the production of the APP alpha and gamma secretase cleavage product (p3) and of beta- and gamma-secretase cleavage product (A beta) in cultured hippocampal neurons from mdc9(-/-) or wild-type mice, arguing against an essential major role of MDC9 as an alpha-secretase in mice. Further studies, including functional challenges and an evaluation of potential compensation by, or redundancy with, other members of the ADAM family or perhaps even with other molecules will be necessary to uncover physiologically relevant functions for MDC9 in mice.  相似文献   
105.
Marine bivalves of the family Teredinidae (shipworms) are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes) of the gills (ctenidia). These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH) and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis). These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose.  相似文献   
106.
Zusammenfassung Zur Identifizierung der Streckungswuchsstoffe in Apfelgeweben wurden Extrakte aus vegetativen und reproduktiven Organen in verschiedenen Entwicklungsstadien chromatographiert und mit Hilfe des Weizen-Koleoptilzylinder-Tests, verschiedener Farbreagentien und synthetischer Vergleichssubstanzen auf ihre Wuchsstoffwirkung und ihren Gehalt an Indolderivaten geprüft. Alle untersuchten Gewebe ergaben im biologischen Test dieselben Wuchsstoffe, allerdings mit erheblichen quantitativen Unterschieden.In der sauren Fraktion von Ätherextrakten aus dem Fruchtfleisch verschiedener Apfelsorten ließen sich Malonyltryptophan, Indol-3-carbonsäure, 2-Hydroxy-indol-3-essigsäure, Indol-3-essigsäure, Indol-3-aldehyd (vor allem in reifen Früchten) und Indol-3-essigsäure-äthylester (in unreifen Früchten) identifizieren. In Gegenwart von IES trat häufig auch Indol-3-acetamid auf; dieses, die Indol-3-essigsäure und 2-Hydroxy-indol-3-essigsäure und der Indol-3-essigsäure-äthylester zeigten im Weizen-Koleoptilzylinder-Test Wuchsstoffwirkung.Nach Hydrolyse des mit Äther extrahierten Materials fanden sich neben einer größeren Anzahl unbekannter Substanzen, die im Farb-Test Indolreaktionen ergaben, drei weitere, im biologischen Test aktive Indolderivate, von denen das eine als Indol-3-acetylasparaginsäure identifiziert werden konnte; die anderen beiden sind möglicherweise ebenfalls Verbindungen der IES mit Aminosäuren.Im Weizen-Koleoptilzylinder-Test konnte eine Überlagerung der Indolderivate mit unbekannten, ebenfalls aktiven Substanzen nicht ausgeschlossen werden.Mit 3 Textabbildungen  相似文献   
107.
Using a two-component Ac/Ds system consisting of a stabilized Ac element (Acc1) and a non-autonomous element (DsA), 650 families of plants carrying independent germinal DsA excisions/transpositions were isolated. Progenies of 559 of these Acc1/DsA families, together with 43 families of plants selected for excision/transposition of wild-type (wt)Ac, were subjected to a broad screening program for mutants exhibiting visible alterations. This resulted in the identification of 48 mutants showing a wide variety of mutant phenotypes, including embryo lethality (24 mutants), chlorophyll defects (5 mutants), defective seedlings (2 mutants), reduced fertility (5 mutants), reduced size (3 mutants), altered leaf morphology (2 mutants), dark green, unexpanded rosette leaves (3 mutants), and aberrant flower or shoot morphology (4 mutants). To test whether these mutants were due to transposon insertions, a series of Southern blot experiments was performed on 28 families, comparing in each case several mutant plants with others showing the wild-type phenotype. A preliminary analysis revealed in 4 of the 28 families analyzed a common, novel DsA fragment in all mutant plants, which was present only in heterozygous plants with wt phenotype, as expected for DsA insertion mutations. These four mutants included two showing embryo lethality, one with dark green, unexpanded rosette leaves and stunted inflorescences, and one with curly growth of stems, leaves and siliques. Further evidence for DsA insertion mutations was obtained for one embryo lethal mutant and for the stunted mutant, while in case of the second embryo lethal mutant, the DsA insertion could be separated from the mutant locus by genetic recombination.  相似文献   
108.
109.
Endothelin-1 (ET-1) is a potent vasoactive peptide that acts on endothelin A (ET(A)) and endothelin B (ET(B)) receptors. Although both receptor subtypes are co-expressed in numerous cells, little is known about their ability to form heterodimers. Here we show that both receptors were co-immunoprecipitated with an ET(B)-specific antibody using extracts from HEK293 cells stably co-expressing a fusion protein consisting of a myc-tagged ET(A) receptor and CFP (ET(A)myc.CFP) and a fusion protein consisting of an ET(B) receptor and YFP (ET(B).YFP). Co-immunoprecipitation was also observed with extracts from HEK293 cells transiently co-expressing FLAG-tagged ET(B) and myc-tagged ET(A) receptors, thereby excluding that heterodimerization is mediated by the CFP/YFP moieties. Heterodimerization was further confirmed in fluorescence resonance energy transfer (FRET) analysis of HEK293 cells transiently co-expressing ET(A)myc.CFP and ET(B).YFP receptors. FRET efficiencies were between 12 and 18% in untreated and antagonist- or ET-1-treated cells, indicating constitutive heterodimerization. Prolonged stimulation (30 min) with the ET(B) receptor-selective agonist BQ3020 decreased FRET efficiency by 50%. This decrease was not observed when internalization was inhibited by co-expression of dominant-negative K44A.dynamin I or incubation with 450 mm sucrose. Enzyme-linked immunosorbent assay and laser scanning microscopy of cell clones stably co-expressing ET(A)myc.CFP/ET(B)flag.YFP receptors revealed a slower sequestration of the ET(B)flag.YFP receptors upon stimulation with ET-1 than with BQ3020. No difference in ET-1 or BQ3020-mediated sequestration was observed with cell clones expressing ET(B)flag.YFP receptors alone. The data suggest that ET(A) and ET(B) receptors form constitutive heterodimers, which show a slower sequestration upon stimulation with ET-1 than with BQ3020. Heterodimer dissociation along the endocytic pathway only occurs upon ET(B)-selective stimulation.  相似文献   
110.
Gisela Mäck  Rudolf Tischner 《Planta》1990,182(2):169-173
The pericarp of the dormant sugarbeet fruit acts as a storage reservoir for nitrate, ammonium and -amino-N. These N-reserves enable an autonomous development of the seedling for 8–10 d after imbibition. The nitrate content of the seed (1% of the whole fruit) probably induces nitrate-reductase activity in the embryo enclosed in the pericarp. Nitrate that leaks out of the pericarp is reabsorbed by the emerging radicle. Seedlings germinated from seeds (pericarp was removed) without external N-supply are able to take up nitrate immediately upon exposure via a low-capacity uptake system (vmax = 0.8 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.12 mM). We assume that this uptake system is induced by the seed nitrate (10 nmol/seed) during germination. Induction of a high-capacity nitrate-uptake system (vmax = 3.4 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.08 mM) by externally supplied nitrate occurs after a 20-min lag and requires protein synthesis. Seedlings germinated from whole fruits absorb nitrate via a highcapacity uptake mechanism induced by the pericarp nitrate (748 nmol/pericarp) during germination. The uptake rates of the high-capacity system depend only on the actual nitrate concentration of the uptake medium and not on prior nitrate pretreatments. Nitrate deprivation results in a decline of the nitrate-uptake capacity (t1/2 of vmax = 5 d) probably caused by the decay of carrier molecules. Small differences in Ks but significant differences in vmax indicate that the low- and high-capacity nitrate-uptake systems differ only in the number of identical carrier molecules.Abbreviations NR nitrate reductase - pFPA para-fluorophenylalanine This work was supported by a grant from Bundesministerium für Forschung und Technologie and by Kleinwanzlebener Saatzucht AG, Einbeck.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号