首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1584篇
  免费   124篇
  1708篇
  2022年   19篇
  2021年   18篇
  2020年   13篇
  2019年   19篇
  2018年   26篇
  2017年   24篇
  2016年   43篇
  2015年   55篇
  2014年   61篇
  2013年   80篇
  2012年   94篇
  2011年   101篇
  2010年   69篇
  2009年   64篇
  2008年   71篇
  2007年   85篇
  2006年   86篇
  2005年   68篇
  2004年   71篇
  2003年   56篇
  2002年   70篇
  2001年   34篇
  2000年   23篇
  1999年   29篇
  1998年   18篇
  1997年   22篇
  1996年   23篇
  1995年   15篇
  1994年   11篇
  1993年   19篇
  1992年   14篇
  1991年   11篇
  1990年   15篇
  1989年   13篇
  1987年   14篇
  1985年   16篇
  1984年   11篇
  1983年   14篇
  1981年   11篇
  1980年   11篇
  1979年   8篇
  1977年   13篇
  1976年   10篇
  1974年   7篇
  1972年   10篇
  1969年   12篇
  1968年   9篇
  1967年   11篇
  1962年   7篇
  1961年   7篇
排序方式: 共有1708条查询结果,搜索用时 15 毫秒
921.
The MRE11/RAD50/NBS1 (MRN) complex plays a central role as a sensor of DNA double strand breaks (DSB) and is responsible for the efficient activation of ataxia-telangiectasia mutated (ATM) kinase. Once activated ATM in turn phosphorylates RAD50 and NBS1, important for cell cycle control, DNA repair and cell survival. We report here that MRE11 is also phosphorylated by ATM at S676 and S678 in response to agents that induce DNA DSB, is dependent on the presence of NBS1, and does not affect the association of members of the complex or ATM activation. A phosphosite mutant (MRE11S676AS678A) cell line showed decreased cell survival and increased chromosomal aberrations after radiation exposure indicating a defect in DNA repair. Use of GFP-based DNA repair reporter substrates in MRE11S676AS678A cells revealed a defect in homology directed repair (HDR) but single strand annealing was not affected. More detailed investigation revealed that MRE11S676AS678A cells resected DNA ends to a greater extent at sites undergoing HDR. Furthermore, while ATM-dependent phosphorylation of Kap1 and SMC1 was normal in MRE11S676AS678A cells, there was no phosphorylation of Exonuclease 1 consistent with the defect in HDR. These results describe a novel role for ATM-dependent phosphorylation of MRE11 in limiting the extent of resection mediated through Exonuclease 1.  相似文献   
922.
Experiments were performed to elucidate why Trypanosoma cruzi isolates 573 and 587 differ widely in their efficiency to infect gastric mucosal epithelium when administered orally to mice. These isolates have the same surface profile and a similar capacity to enter host cells in vitro. Metacyclic forms of isolates 573 and 587 and the control CL isolate expressed similar levels of gp82, which is a cell invasion-promoting molecule. Expression of gp90, a molecule that downregulates cell invasion, was lower in the CL isolate. Consistent with this profile, approximately threefold fewer parasites of isolates 573 and 587 entered epithelial HeLa cells, as compared to the CL isolate. No difference in the rate of intracellular parasite replication was observed between isolates. When given orally to mice, metacyclic forms of isolate 573, like the CL isolate, produced high parasitemia (>10(6) parasites per ml at the peak), killing approximately 40% of animals, whereas infection with isolate 587 resulted in low parasitemia (<10(5) parasites per ml), with zero mortality. On the fourth day post-inoculation, tissue sections of the mouse stomach stained with hematoxylin and eosin showed a four to sixfold higher number of epithelial cells infected with isolate 573 or CL than with isolate 587. The rate of intracellular parasite development was similar in all isolates. Mimicking in vivo infection, parasites were treated with pepsin at acidic pH and then assayed for their ability to enter HeLa cells or explanted gastric epithelial cells. Pepsin extensively digested gp90 from isolate 573 and significantly increased invasion of both cells, but had minor effect on gp90 or infectivity of isolates 587 and CL. The profile of g82 digestion was similar in isolates 573 and 587, with partial degradation to a approximately 70 kDa fragment, which preserved the target cell binding domain as well as the region involved in gastric mucin adhesion. Gp82 from CL isolate was resistant to pepsin. Assays with parasites recovered from the mouse stomach 2 h after oral infection showed an extensive digestion of gp90 and increased infectivity of isolate 573, but not of isolate 587 or CL. Our data indicate that T. cruzi infection in vitro does not always correlate with in vivo infection because host factors may act on parasites, modulating their infectivity, as is the case of pepsin digestion of isolate 573 gp90.  相似文献   
923.
924.
925.
Acute leukemia is a disorder of the hematopoietic system characterized by the expansion of a clonal population of cells blocked from differentiating into mature cells. Recent studies have shown that chalcones and their derivatives induce apoptosis in different cell lines. Since new compounds with biological activity are needed, the aim of this study was to evaluate the cytotoxic effect of three synthetic chalcones, derived from 1-naphthaldehyde and 2-naphthaldehyde, on human acute myeloid leukemia K562 cells and on human acute lymphoblastic leukemia Jurkat cells. Based on the results, the most cytotoxic compound (A1) was chosen for further analysis in six human acute leukemia cells and in a human colon adenocarcinoma cell line (HT-29). Chalcone A1 significantly reduced the cell viability of K562, Jurkat, Kasumi, U937, CEM and NB4 cells in a concentration and time-dependent manner when compared with the control group (IC50 values between ∼1.5 μM and 40 μM). It was also cytotoxic to HL-29 cells. To further examine its effect on normal cells, peripheral blood lymphocytes collected from healthy volunteers were incubated with the compound. It has also been incubated with human fibroblasts cultured from bone marrow (JMA). Chalcone A1 is non-cytotoxic to PBL cells and to JMA cells. A1 caused significant cell cycle arrest in all phases according to the cell line, and increased the proportion of cells in the sub G0/G1 phase. To evaluate whether this chalcone induced cell death via an apoptotic or necrotic pathway, cell morphology was examined using fluorescence microscopy. Cells treated with A1 at IC50 demonstrated the morphological characteristic of apoptosis, such as chromatin condensation and formation of apoptotic bodies. Apoptosis was confirmed by externalization of phosphatidylserine, which was detected by the Annexin V-FITC method, and by DNA fragmentation. The results suggest that chalcone A1 has potential as a new lead compound for cancer therapy.  相似文献   
926.
Cancer stem cells (CSCs) are linked to metastasis. Moreover, a discrete group of miRNAs (metastamiRs) has been shown to promote metastasis. Accordingly, we propose that miRNAs that function as metastatic promoters may influence the CSC phenotype. To study this issue, we compared the expression of 353 miRNAs in CSCs enriched from breast cancer cell lines using qRT–PCR analysis. One of the most altered miRNAs was miR‐10b, which is a reported promoter of metastasis and migration. Stable overexpression of miR‐10b in MCF‐7 cells (miR‐10b‐OE cells) promoted higher self‐renewal and expression of stemness and epithelial–mesenchymal transition (EMT) markers. In agreement with these results, inhibiting miR‐10b expression using synthetic antisense RNAs resulted in a decrease in CSCs self‐renewal. Bioinformatics analyses identified several potential miR‐10b mRNA targets, including phosphatase and tensin homolog (PTEN), a key regulator of the PI3K/AKT pathway involved in metastasis, cell survival, and self‐renewal. The targeting of PTEN by miR‐10b was confirmed using a luciferase reporter, qRT–PCR, and Western blot analyses. Lower PTEN levels were observed in CSCs, and miR‐10b depletion not only increased PTEN mRNA and protein expression but also decreased the activity of AKT, a downstream PTEN target kinase. Correspondingly, PTEN knockdown increased stem cell markers, whereas AKT inhibitors compromised the self‐renewal ability of CSCs and breast cancer cell lines overexpressing miR‐10b. In conclusion, miR‐10b regulates the self‐renewal of the breast CSC phenotype by inhibiting PTEN and maintaining AKT pathway activation.  相似文献   
927.
Fur is a DNA binding protein that represses bacterial iron uptake systems. Eleven footprinted Escherichia coli Fur binding sites were used to create an initial information theory model of Fur binding, which was then refined by adding 13 experimentally confirmed sites. When the refined model was scanned across all available footprinted sequences, sequence walkers, which are visual depictions of predicted binding sites, frequently appeared in clusters that fit the footprints (~83% coverage). This indicated that the model can accurately predict Fur binding. Within the clusters, individual walkers were separated from their neighbors by exactly 3 or 6 bases, consistent with models in which Fur dimers bind on different faces of the DNA helix. When the E. coli genome was scanned, we found 363 unique clusters, which includes all known Fur-repressed genes that are involved in iron metabolism. In contrast, only a few of the known Fur-activated genes have predicted Fur binding sites at their promoters. These observations suggest that Fur is either a direct repressor or an indirect activator. The Pseudomonas aeruginosa and Bacillus subtilis Fur models are highly similar to the E. coli Fur model, suggesting that the Fur–DNA recognition mechanism may be conserved for even distantly related bacteria.  相似文献   
928.
Peroxidation of lipids is of significant interest owing to the evidence that peroxyl radicals and products of lipid peroxidation may be involved in the toxicity of compounds initiating a deteriorative reaction in the processing and storage of lipid-containing foods. In view of the significance of the antioxidant role of the dietary compound vitamin E and its water-soluble analogue Trolox in research of lipid-containing foods, it is desirable to determine more specifically how and where they operate its antioxidant activity in lipid membranes. In this study, unilamellar liposomes of phosphatidylcholine were used as membrane mimetic systems to estimate the antioxidant properties of vitamin E and Trolox and establish a relationship between their interactions with the membrane and their consequent antioxidant activity. Lipid peroxidation was initiated by the peroxyl radical (ROO) in lipid and aqueous media by the thermal decomposition of azocompounds and was assessed by the fluorescence intensity decay of the fluorescent probe diphenylhexatriene propionic acid. Results obtained showed that membrane lipoperoxidation is related not only to the scavenging characteristics of the compounds studied but also to their ability to interact with the lipid bilayers, and consequently liposomes provide additional information to that obtained currently from assays performed in aqueous buffer media.  相似文献   
929.
The effect of Pb on Saccharomyces cerevisiae cell structure and function was examined. Membrane integrity was assessed by the release of UV-absorbing compounds and by the intracellular K+ efflux. No leakage of UV260-absorbing compounds or loss of K+ were observed in Pb (until 1,000 μmol/l) treated cells up to 30 min; these results suggest that plasma membrane seems not to be the immediate and primary target of Pb toxicity. The effect of Pb on yeast metabolism was examined using the fluorescent probe FUN-1 and compared with the ability to reproduce, evaluated by colony-forming units counting. The exposition of yeast cells, during 60 min to 1,000 μmol/l Pb, induces a decrease in the ability to process FUN-1 although the cells retain its proliferation capacity. A more prolonged contact time (120 min) of yeast cells with Pb induces a marked (> 50%) loss of yeast cells metabolic activity and replication competence through a mechanism which most likely requires protein synthesis.  相似文献   
930.
The COOH-terminal part of the yeast mitochondrial initiation factor 2 (ymIF2), containing the C2 subdomain, was expressed and purified as a histidine-tagged polypeptide of 137 amino acids. Like the recombinant full-length protein, the C2 subdomain binds both formyl-Met-tRNA(f)(Met) and unformylated Met-tRNA(f)(Met) with only a small preference for the former species. Formation of a binary complex between the C2 subdomain or the full-length ymIF2 and initiator tRNA was also assessed by fluorescence measurements. The binding of coumarin-Met-tRNA(f) to either protein caused a blue shift of the coumarin emission spectrum and an increase in anisotropy. Full-length ymIF2 is functionally competent in forming an initiation complex and supporting formation of the first peptide bond on Escherichia coli ribosomes. The results demonstrate that ymIF2 has the same domain structure and biochemical properties of a typical IF2 species as found in bacteria or mammalian mitochondria--but with enhanced ability to bind unformylated initiator Met-tRNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号