首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44825篇
  免费   3476篇
  国内免费   123篇
  48424篇
  2022年   457篇
  2021年   863篇
  2020年   599篇
  2019年   765篇
  2018年   1019篇
  2017年   857篇
  2016年   1236篇
  2015年   1762篇
  2014年   1947篇
  2013年   2610篇
  2012年   2837篇
  2011年   2720篇
  2010年   1857篇
  2009年   1521篇
  2008年   2123篇
  2007年   2040篇
  2006年   1936篇
  2005年   1637篇
  2004年   1642篇
  2003年   1482篇
  2002年   1505篇
  2001年   1235篇
  2000年   1142篇
  1999年   987篇
  1998年   486篇
  1997年   461篇
  1996年   376篇
  1995年   374篇
  1994年   294篇
  1993年   331篇
  1992年   635篇
  1991年   604篇
  1990年   560篇
  1989年   500篇
  1988年   414篇
  1987年   402篇
  1986年   385篇
  1985年   421篇
  1984年   396篇
  1983年   348篇
  1982年   254篇
  1981年   265篇
  1980年   238篇
  1979年   312篇
  1978年   275篇
  1977年   284篇
  1976年   276篇
  1975年   282篇
  1974年   263篇
  1973年   245篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
891.
32P phosphorylation of plasma membranes from human blood platelets, under conditions that closely resemble physiological ones (endogeneous phosphate donors and intact platelets in homologous plasma), result in the incorporation of the label mainly in a membrane glycoprotein of apparently high molecular weight (greater than 400 000). Dibutyryl cyclic AMP, an inhibitor of platelet aggregation, specifically increases the degree of phosphorylation of this glycoprotein. Moreover, it has been found that prostaglandin E1 one of the most potent inhibitors of platelet aggregation which also increases phosphorylation of the same glycoprotein, is significantly more effective than cyclic AMP.Cyclic GMP does not have any apparent effect on platelet aggregation. However, incubation of platelet-rich plasma with both cyclic GMP and cyclic AMP results in a partial recovery of the platelet responsiveness towards ADP-induced aggregation. Coincidently, the degree of phosphorylation of the high molecular weight glycoprotein under these conditions, although still higher than in controls (no nucleotides added), is significantly decreased as compared with cyclic AMP-treated cells. Furthermore, cyclic GMP inhibits the cyclic AMP-dependent protein kinase activity in isolated platelet plasma membranes.These results suggest a central role for this membrane phosphoglycoprotein in the triggering of platelet aggregation and, furthermore, suggest that modulation of its degree of phosphorylation may be exerted through some cyclic AMP/cyclic GMP relationship, which in the basal state might be critical for platelet responsiveness.  相似文献   
892.
893.
Mechanisms of glycogenolysis have been investigated in a comparative study with Wistar rats and gsd rats, which maintain a high glycogen concentration in the liver as a result of a genetic deficiency of phosphorylase kinase. In Wistar hepatocytes the rate of glycogenolysis, as modulated by glucagon and by glucose, was proportional to the concentration of phosphorylase a. In suspensions of gsd hepatocytes the rate of glycogenolysis was far too high as compared with the low level of phosphorylase a; in addition, only a minor fraction of the glycogen lost was recovered as glucose and lactate, owing to the accumulation of oligosaccharides. When the gsd hepatocytes were incubated in the presence of an inhibitor of alpha-amylase (BAY e 4609) glycogenolysis and the formation of oligosaccharides virtually ceased; the production of glucose plus lactate, already modest in the absence of BAY e 4609, was further decreased by 40%, owing to the suppression of a pathway for glucose production by the successive actions of alpha-amylase and alpha-glucosidase. Evidence was obtained that gsd hepatocytes are more fragile, and that amylolysis of glycogen occurred in damaged cells and/or in the extracellular medium. This may even occur in vivo, since quick-frozen liver samples from anesthetized gsd rats contained severalfold higher concentrations of oligosaccharides than did similar samples from Wistar rats. However, administration of a hepatotoxic agent (CCl4) caused hepatic glycogen depletion in Wistar rats, but not in gsd rats. The administration of phloridzin and of vinblastine, which have been proposed to induce glycogenolysis in the lysosomal system, did not decrease the hepatic glycogen level in gsd rats. Taken together, the data indicate that only the phosphorolytic degradation of glycogen is metabolically important, and that alpha-amylolysis is an indication of an increased fragility of gsd hepatocytes, which becomes prominent when these cells are incubated in vitro.  相似文献   
894.
In this study we describe two properties of the Gram-negative bacterium Bilophila wadsworthia, namely the ability to clot Limulus lysate and the capacity to induce the production of tissue factor-like procoagulant activity by human mononuclear cells in vitro. Although exhibited at a lower degree when compared with those of typical Gram-negative bacteria or Gram-negative endotoxin those activities may account in part for Bilophila's pathogenicity. The capacity indeed to induce fibrin formation through the interaction with mononuclear cells suggests one mechanism by which the microorganism might cause abscess formation in the host. Moreover, since this activity is dependent on the number of Bilophila interacting with mononuclear cells, we hypothesize that this biological activity is closely influenced by growth environment.  相似文献   
895.
Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-13C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained 13C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis (13C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs.  相似文献   
896.
Alamethicin F50/5 is a hydrophobic peptide that is devoid of charged residues and that induces voltage-dependent ion channels in lipid membranes. The peptide backbone is likely to be involved in the ion conduction pathway. Electron spin-echo spectroscopy of alamethicin F50/5 analogs in which a selected Aib residue (at position n = 1, 8, or 16) is replaced by the TOAC amino-acid spin label was used to study torsional dynamics of the peptide backbone in association with phosphatidylcholine bilayer membranes. Rapid librational motions of limited angular amplitude were observed at each of the three TOAC sites by recording echo-detected spectra as a function of echo delay time, 2τ. Simulation of the time-resolved spectra, combined with conventional EPR measurements of the librational amplitude, shows that torsional fluctuations of the peptide backbone take place on the subnanosecond to nanosecond timescale, with little temperature dependence. Associated fluctuations in polar fields from the peptide could facilitate ion permeation.  相似文献   
897.
DEAD-box proteins are ATPase enzymes that destabilize and unwind duplex RNA. Quantitative knowledge of the ATPase cycle parameters is critical for developing models of helicase activity. However, limited information regarding the rate and equilibrium constants defining the ATPase cycle of RNA helicases is available, including the distribution of populated biochemical intermediates, the catalytic step(s) that limits the enzymatic reaction cycle, and how ATP utilization and RNA interactions are linked. We present a quantitative kinetic and equilibrium characterization of the ribosomal RNA (rRNA)-activated ATPase cycle mechanism of DbpA, a DEAD-box rRNA helicase implicated in ribosome biogenesis. rRNA activates the ATPase activity of DbpA by promoting a conformational change after ATP binding that is associated with hydrolysis. Chemical cleavage of bound ATP is reversible and occurs via a γ-phosphate attack mechanism. ADP-Pi and RNA binding display strong thermodynamic coupling, which causes DbpA-ADP-Pi to bind rRNA with > 10-fold higher affinity than with bound ATP, ADP or in the absence of nucleotide. The rRNA-activated steady-state ATPase cycle of DbpA is limited both by ATP hydrolysis and by Pi release, which occur with comparable rates. Consequently, the predominantly populated biochemical states during steady-state cycling are the ATP- and ADP-Pi-bound intermediates. Thermodynamic linkage analysis of the ATPase cycle transitions favors a model in which rRNA duplex destabilization is linked to strong rRNA and nucleotide binding. The presented analysis of the DbpA ATPase cycle reaction mechanism provides a rigorous kinetic and thermodynamic foundation for developing testable hypotheses regarding the functions and molecular mechanisms of DEAD-box helicases.  相似文献   
898.
It is well documented that glycan synthesis is altered in some pathological processes, including cancer. The most frequently observed alterations during tumourigenesis are extensive expression of beta1,6-branched complex type N-glycans, the presence of poly-N-acetyllactosamine structures, and high sialylation of cell surface glycoproteins. This study investigated two integrins, alpha3beta1 and alpha(v)beta3, whose expression is closely related to cancer progression. Their oligosaccharide structures in two metastatic melanoma cell lines (WM9, WM239) were analysed with the use of matrix-assisted laser desorption ionisation mass spectrometry. Both examined integrins possessed heavily sialylated and fucosylated glycans, with beta1,6-branches and short polylactosamine chains. In WM9 cells, alpha3beta1 integrin was more variously glycosylated than alpha(v)beta3; in WM239 cells the situation was the reverse. Functional studies (wound healing and ELISA integrin binding assays) revealed that the N-oligosaccharide component of the tested integrins influenced melanoma cell migration on vitronectin and alpha3beta1 integrin binding to laminin-5. Additionally, more variously glycosylated integrins exerted a stronger influence on these parameters. To the best of our knowledge, this is the first report concerning structural characterisation of alpha(v)beta3 integrin glycans in melanoma or in any cancer cells.  相似文献   
899.
To obtain selective and potent inhibitors of dipeptidyl peptidases 8 and 9, we synthesized a series of substituted isoindolines as modified analogs of allo-Ile-isoindoline, the reference DPP8/9 inhibitor. The influence of phenyl substituents and different P2 residues on the inhibitors’ affinity toward other DPPs and more specifically, their potential to discriminate between DPP8 and DPP9 will be discussed. Within this series compound 8j was shown to be a potent and selective inhibitor of DPP8/9 with low activity toward DPP II.  相似文献   
900.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号