首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   25篇
  377篇
  2024年   2篇
  2023年   2篇
  2022年   5篇
  2021年   9篇
  2020年   8篇
  2019年   11篇
  2018年   13篇
  2017年   8篇
  2016年   13篇
  2015年   25篇
  2014年   27篇
  2013年   27篇
  2012年   36篇
  2011年   26篇
  2010年   15篇
  2009年   14篇
  2008年   21篇
  2007年   22篇
  2006年   15篇
  2005年   19篇
  2004年   12篇
  2003年   20篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1982年   1篇
排序方式: 共有377条查询结果,搜索用时 15 毫秒
101.
In this work we investigated the involvement of Glomus intraradices in the regulation of plant growth, polyamines and proline levels of two Lotus glaber genotypes differing in salt tolerance, after longterm exposure to saline stress. The experiment consisted of a randomized block design with three factors: (1) mycorrhizal treatments (with or without AM fungus); (2) two salinity levels of 0 and 200mM NaCl; and (3) L. glaber genotype. Experiments were performed using stem cuttings derived from L. glaber individuals representing a natural population from saline lowlands. One of the most relevant results was the higher content of total free polyamines in mycorrhized plants compared to non-AM ones. Since polyamines have been proposed as candidates for the regulation of root development under saline situations, it is possible that AM plants (which contained higher polyamine levels and showed improved root growth) were better shaped to cope with salt stress. Colonization by G. intraradices also increased (Spd+Spm)/Put ratio in L. glaber roots. Interestingly, such increment in salt stressed AM plants of the sensitive genotype, was even higher than that produced by salinization or AM symbiosis separately. On the other hand, salinity but not mycorrhizal colonization influenced proline levels in both L. glaber genotypes since high proline accumulation was observed in both genotypes under salt stress conditions. Our results suggest that modulation of polyamine pools can be one of the mechanisms used by AM fungi to improve L. glaber adaptation to saline soils. Proline accumulation in response to salt stress is a good indicator of stress perception and our results suggest that it could be used as such among L. glaber genotypes differing in salt stress tolerance.  相似文献   
102.
We present clinical and developmental data on a girl with a de novo terminal deletion of the long arm of chromosome 4, del(4)(q33). The patient was evaluated at birth and followed up until 5 years of age. She showed facial and digital dysmorphism, a complex congenital heart defect, a large occipital encephalocele, and postnatal growth deficiency. Her neuropsychomotor milestones were delayed, and she developed learning difficulties. Apart from standard Giemsa banding, a molecular genetic analysis was performed using a comparative genomic hybridization (CGH) array. This revealed a terminal deletion at the band 4q32.3, which is directly adjacent to 4q33. The clinical findings in our patient differ from those described previously in patients with del(4)(q33) and del(4)(q32), respectively. In particular, the prominent occipital encephalocele has not been observed before in a terminal 4q deletion.  相似文献   
103.
104.
Partially purified preparations with proteolytic activity, obtained from South American native plants, were used as biocatalysts in condensation reactions of N-protected arginine alkyl ester derivatives with decylamine and dodecylamine in low-water content systems. The final products are cationic surfactants with potential application as emulsifiers and preservatives. Most of the proteolytic extracts were obtained from latex of species belonging to the Asclepiadaceae family (araujiain from Araujia hortorum, asclepain c from Asclepias curassavica and funastrain from Funastrum clausum). Hieronymain was obtained from unripe fruits of Bromelia hieronymi (Bromeliaceae). Plant proteases from commercial sources (papain and bromelain) were also tested as catalysts in the same reactions. Araujiain and funastrain furnished good reaction conversions (60–84%, with a ratio synthesis/hydrolysis of 2–5) similar to those obtained with commercial papain. Moreover, araujiain was the biocatalyst which rendered the best conversions (60%) for the synthesis of the two novel Bz-Arg-NH-dodecylamide (Bz-Arg-NHC12) and Bz-Arg-NH-decylamide (Bz-Arg-NHC10) derivatives. Moderate to poor conversions (10–50%, showing a ratio synthesis/hydrolysis of 0.5–1) were achieved with asclepain c, hieronymain and bromelain. The screening presented in this work revealed that, although these are structurally similar, their behavior for the synthesis of this kind of products differ among them.  相似文献   
105.
Passiflora alata Curtis, commonly known as sweet passion fruit, is one of the commercially cultivated species of the genus Passiflora, whose fruits can be consumed in natura due to their sweet taste. It is also used worldwide as an ornamental and in folk medicine. The goal of this work was the evaluation of the antioxidant potential of extracts from in vivo plants, and in vitro-derived materials of P. alata. Leaves from in vivo plants were used for the optimization of parameters that affect the efficiency of extraction of antioxidant compounds (proportions of ethanol:water, maceration period, solvent:plant tissue ratio, and number of extraction stages), by employing the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The antioxidant activity and the extract yields were significantly influenced by the proportion of ethanol:water and maceration period. The optimized protocol was applied to obtain the extracts of in vitro-derived materials. Total phenolic content was determined using the Folin–Ciocalteu method. Higher antioxidant activities and phenolic contents were observed in extracts from leaves of in vivo-seed derived and from acclimatized plants when compared to in vitro plants, calluses and suspension cultures. Differences in the reaction kinetics of DPPH scavenging activity were also observed.  相似文献   
106.
A resistance gene analog (RGA)-derived sequence-characterized amplified region (SCAR) marker was successfully developed based on sequence homology with disease resistance genes of an AFLP molecular marker tightly linked to the Rl adg gene of Solanum tuberosum ssp. andigena. The new marker was designated as ‘RGASC850’ (RGA-derived SCAR) based on the size of the amplified fragment. ‘RGASC850’ could be efficiently used for monitoring introgression of Rl adg against backgrounds of improved gene pools with low likelihood of identifying false positives due to recombination. This SCAR proved to be highly predictive of Rl adg -based resistance, as it did not amplify potato leafroll virus (PLRV) resistance sources other than andigena, and thus would be useful in developing cultivars with complementary sources of resistance to PLRV. In addition, a cleaved amplified polymorphic sequence (CAPS) marker based on ‘RGASC850’ was developed capable of distinguishing genotypes carrying Rl adg . This CAPS marker would be useful for screening breeding populations derived from wide crosses, and confirming presence of the Rl adg gene in those parents amplifying the ‘RGASC850’ marker.  相似文献   
107.
Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium biofilters, and that AOA community composition within a given aquarium is stable over time and across biofilter support material types.  相似文献   
108.
The spontaneous and reversible formation of foci and filaments that contain proteins involved in different metabolic processes is common in both the nucleus and the cytoplasm. Stress granules (SGs) and processing bodies (PBs) belong to a novel family of cellular structures collectively known as mRNA silencing foci that harbour repressed mRNAs and their associated proteins. SGs and PBs are highly dynamic and they form upon stress and dissolve thus releasing the repressed mRNAs according to changes in cell physiology. In addition, aggregates containing abnormal proteins are frequent in neurodegenerative disorders. In spite of the growing relevance of these supramolecular aggregates to diverse cellular functions a reliable automated tool for their systematic analysis is lacking. Here we report a MATLAB Script termed BUHO for the high-throughput image analysis of cellular foci. We used BUHO to assess the number, size and distribution of distinct objects with minimal deviation from manually obtained parameters. BUHO successfully addressed the induction of both SGs and PBs in mammalian and insect cells exposed to different stress stimuli. We also used BUHO to assess the dynamics of specific mRNA-silencing foci termed Smaug 1 foci (S-foci) in primary neurons upon synaptic stimulation. Finally, we used BUHO to analyze the role of candidate genes on SG formation in an RNAi-based experiment. We found that FAK56D, GCN2 and PP1 govern SG formation. The role of PP1 is conserved in mammalian cells as judged by the effect of the PP1 inhibitor salubrinal, and involves dephosphorylation of the translation factor eIF2α. All these experiments were analyzed manually and by BUHO and the results differed in less than 5% of the average value. The automated analysis by this user-friendly method will allow high-throughput image processing in short times by providing a robust, flexible and reliable alternative to the laborious and sometimes unfeasible visual scrutiny.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号