首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   16篇
  2022年   11篇
  2021年   13篇
  2020年   8篇
  2019年   7篇
  2018年   15篇
  2017年   9篇
  2016年   15篇
  2015年   21篇
  2014年   24篇
  2013年   41篇
  2012年   45篇
  2011年   40篇
  2010年   19篇
  2009年   26篇
  2008年   26篇
  2007年   24篇
  2006年   25篇
  2005年   19篇
  2004年   10篇
  2003年   10篇
  2002年   19篇
  2001年   1篇
  2000年   6篇
  1999年   2篇
  1998年   4篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有455条查询结果,搜索用时 46 毫秒
71.
Metarhizium isolates from soil (53) and insect hosts (10) were evaluated for extracellular production of cuticle degrading enzyme (CDE) activities such as chitinase, chitin deacetylase (CDA), chitosanase, protease and lipase. Regression analysis demonstrated the relation of CDE activities with Helicoverpa armigera mortality. On basis of this relation, ten isolates were selected for further evaluation. Subsequently, based on LT50 of the 10 isolates towards H. armigera, five isolates were selected. Out of these five isolates, three were selected on the basis of higher conidia production (60–75 g/kg rice), faster sedimentation time (ST50) (2.3–2.65 h in 0.1% (w/v) Tween 80) and lower LC50 (1.4–5.7×103 conidia/mL) against H. armigera. Finally, three Metarhizium isolates were selected for the molecular fingerprinting using ITS sequencing and RAPD patterning. All three isolates, M34412, M34311 and M81123, showed comparable RAPD patterns with a 935G primer. These were further evaluated for their field performance against H. armigera in a chickpea crop. The percent efficacies with the three Metarhizium isolates were from 65 to 72%, which was comparable to the chemical insecticide, endosulfan (74%).  相似文献   
72.
Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. The effect of NaCl stress on growth, ion accumulation, contents of protein, proline, and antioxidant enzymes activity in callus cultures of J. curcas was investigated. Exposure of callus to NaCl decreased growth in a concentration dependent manner. NaCl treated callus accumulated Na and declined in K, Ca and Mg contents. Na/K ratio increased steadily as a function of external NaCl treatment. NaCl induced significant differences in quality and quantity of proteins, whereas, proline accumulation remained more or less constant with treatment. NaCl stress enhanced the activity of superoxide dismutase (SOD; E.C. 1.15.1.1) and peroxidase (POX; E.C. 1.11.1.7). Further in the isoenzyme studies, four SOD isoenzymes (SOD 1, 2, 3, and 4) and two POX isoenzymes (POX 1 and 2) were detected with the treatment. NaCl strongly induced activity of SOD 4 isoenzyme in 40, 60, 80 mM and POX 2 isoenzyme in 40 and 80 mM NaCl concentrations. Increase in antioxidant enzymes activity could be a response to cellular damage induced by NaCl. This increase could not stop the deleterious effects of NaCl, but it reduced stress severity and thus allowed cell growth to occur.  相似文献   
73.
Glycogen is an immediate source of glucose for cardiac tissue to maintain its metabolic homeostasis. However, its excess brings about cardiac structural and physiological impairments. Previously, we have demonstrated that in hearts from dexamethasone (Dex)-treated animals, glycogen accumulation was enhanced. We examined the influence of 5'-AMP-activated protein kinase (AMPK) on glucose entry and glycogen synthase as a means of regulating the accumulation of this stored polysaccharide. After Dex, cardiac tissue had a limited contribution toward the development of whole body insulin resistance. Measurement of glucose transporter 4 (GLUT4) at the plasma membrane revealed an excess presence of this transporter protein at this location. Interestingly, this was accompanied by an increase in GLUT4 in the intracellular membrane fraction, an effect that was well correlated with increased GLUT4 mRNA. Both total and phosphorylated AMPK increased after Dex. Immunoprecipitation of Akt substrate of 160 kDa (AS160) followed by Western blot analysis demonstrated no change in Akt phosphorylation at Ser(473) and Thr(308) in Dex-treated hearts. However, there was a significant increase in AMPK phosphorylation at Thr(172), which correlated well with AS160 phosphorylation. In Dex-treated hearts, there was a considerable reduction in the phosphorylation of glycogen synthase, whereas glycogen synthase kinase-3-beta phosphorylation was augmented. Our data suggest that AMPK-mediated glucose entry combined with the activation of glycogen synthase and a reduction in glucose oxidation (Qi et al., Diabetes 53: 1790-1797, 2004) act together to promote glycogen storage. Should these effects persist chronically in the heart, they may explain the increased morbidity and mortality observed with long-term excesses in endogenous or exogenous glucocorticoids.  相似文献   
74.
Enzymic changes in response to zinc nutrition   总被引:1,自引:0,他引:1  
With a view to evaluating the suitability of Zn induced changes in enzyme activities and for assessing Zn nutrient status, black gram (Vigna mungo L. cv. IPU 94) was grown under controlled sand culture at five levels of Zn supply ranging from 0.01 to 10 μmol/L. Leaves of 60 d old plants were examined for Zn concentration and activities of fructose 1,6 biphosphate aldolase, carbonic anhydrase, total superoxide dismutase, Cu-Zn SOD, acid phosphatase and ribonuclease, which have been shown to be activated/inhibited by Zn deficiency. Sub-optimal supply of Zn decreased the activities of FBPAse, CA, total SOD and Cu-Zn SOD and increased the activities of APase and RNAse. Activities of the Zn enzymes CA and Cu-Zn SOD, are highly correlated with Zn supply, and suitable as indicators of Zn nutrient status of plants. Activation of APase and RNAse by other micronutrient deficiencies and stress conditions does not favour their use as indicators of Zn nutrient stress.  相似文献   
75.
76.
Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile508, Asn509, and Asp511) in communicating with converter domain residue Arg759. We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle.  相似文献   
77.
Abstract

From 24 hour collections of urines of chronic myelogenous leukemia (CML) patients, a novel nucleoside was isolated. It was assigned the structure, 5′-deoxyinosine (I) on the basis of UV, NMR and mass spectrometry and by comparison of the spectral data and HPLC and TLC mobilities with those of the authentic sample. Another nucleoside, 5′-deoxy-5′-methylthioadenosine sulfoxide previously isolated from the urines of immunodeficient children was also found in the urine of a CML patient. Possible origin and significance of both of these nucleosides are discussed.  相似文献   
78.
Fragmentation of native habitats is now a ubiquitous phenomenon affecting wildlife at various scales. We examined selection of den-sites (n = 26) by Indian foxes (Vulpes bengalensis) in a highly modified short-grassland landscape in central India (Jan-May, 2010). At the scale of the home-range, defined by an 800 m circular buffer around den sites, we examined the effect of land-cover edges and roads on selection of sites for denning using a distance-based approach. At the smaller den-area scale, defined by a 25 m x 25 m plot around den and paired available sites, the effect of microhabitat characteristics was examined using discrete-choice models. Indian foxes selected den-sites closer to native grasslands (t = -9.57, P < 0.001) and roads (t = -2.04, P = 0.05) than random at the home-range scale. At the smaller scale, abundance of rodents and higher visibility increased the odds of selection of a site by eight and four times respectively, indicating resource availability and predator avoidance to be important considerations for foxes. Indian foxes largely chose to den in human-made structures, indicated by the proportion of dens found in earthen bunds (0.69) and boulder piles (0.27) in the study area. With agricultural expansion and human modification threatening native short-grassland habitats, their conservation and effective management in human-dominated landscapes will benefit the Indian fox. The presence of some human-made structures within native grasslands would also be beneficial for this den-dependent species. We suggest future studies examine the impact of fragmentation and connectivity of grasslands on survival and reproductive success of the Indian fox.  相似文献   
79.
80.
Mutations in the human LMNA gene cause a collection of diseases known as laminopathies. These include myocardial diseases that exhibit age‐dependent penetrance of dysrhythmias and heart failure. The LMNA gene encodes A‐type lamins, intermediate filaments that support nuclear structure and organize the genome. Mechanisms by which mutant lamins cause age‐dependent heart defects are not well understood. To address this issue, we modeled human disease‐causing mutations in the Drosophila melanogaster Lamin C gene and expressed mutant Lamin C exclusively in the heart. This resulted in progressive cardiac dysfunction, loss of adipose tissue homeostasis, and a shortened adult lifespan. Within cardiac cells, mutant Lamin C aggregated in the cytoplasm, the CncC(Nrf2)/Keap1 redox sensing pathway was activated, mitochondria exhibited abnormal morphology, and the autophagy cargo receptor Ref2(P)/p62 was upregulated. Genetic analyses demonstrated that simultaneous over‐expression of the autophagy kinase Atg1 gene and an RNAi against CncC eliminated the cytoplasmic protein aggregates, restored cardiac function, and lengthened lifespan. These data suggest that simultaneously increasing rates of autophagy and blocking the Nrf2/Keap1 pathway are a potential therapeutic strategy for cardiac laminopathies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号