首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5299篇
  免费   328篇
  国内免费   1篇
  2024年   5篇
  2023年   53篇
  2022年   108篇
  2021年   195篇
  2020年   128篇
  2019年   130篇
  2018年   221篇
  2017年   153篇
  2016年   274篇
  2015年   353篇
  2014年   379篇
  2013年   479篇
  2012年   515篇
  2011年   431篇
  2010年   289篇
  2009年   233篇
  2008年   306篇
  2007年   290篇
  2006年   262篇
  2005年   196篇
  2004年   186篇
  2003年   136篇
  2002年   124篇
  2001年   21篇
  2000年   14篇
  1999年   19篇
  1998年   21篇
  1997年   14篇
  1996年   7篇
  1995年   10篇
  1994年   7篇
  1993年   10篇
  1992年   6篇
  1991年   7篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   2篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1981年   1篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有5628条查询结果,搜索用时 15 毫秒
81.

Background

It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy.

Methodology/Principal Findings

Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation.

Conclusions

Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined.  相似文献   
82.
The viability of algae-based biodiesel industry depends on the selection of adequate strains in regard to profitable yields and oil quality. This work aimed to bioprospecting and screening 12 microalgae strains by applying, as selective criteria, the volumetric lipid productivity and the fatty acid profiles, used for estimating the biodiesel fuel properties. Volumetric lipid productivity varied among strains from 22.61 to 204.91 mg l?1 day?1. The highest lipid yields were observed for Chlorella (204.91 mg l?1 day1) and Botryococcus strains (112.43 and 98.00 mg l?1 day?1 for Botryococcus braunii and Botryococcus terribilis, respectively). Cluster and principal components analysis analysis applied to fatty acid methyl esters (FAME) profiles discriminated three different microalgae groups according to their potential for biodiesel production. Kirchneriella lunaris, Ankistrodesmus fusiformis, Chlamydocapsa bacillus, and Ankistrodesmus falcatus showed the highest levels of polyunsaturated FAME, which incurs in the production of biodiesels with the lowest (42.47–50.52) cetane number (CN), the highest (101.33–136.97) iodine values (IV), and the lowest oxidation stability. The higher levels of saturated FAME in the oils of Chlamydomonas sp. and Scenedesmus obliquus indicated them as source of biodiesel with higher oxidation stability, higher CN (63.63–64.94), and lower IV (27.34–35.28). The third group, except for the Trebouxyophyceae strains that appeared in isolation, are composed by microalgae that generate biodiesel of intermediate values for CN, IV, and oxidation stability, related to their levels of saturated and monosaturated lipids. Thus, in this research, FAME profiling suggested that the best approach for generating a microalgae-biodiesel of top quality is by mixing the oils of distinct cell cultures.  相似文献   
83.
Although recent preclinical and clinical studies have demonstrated that recombinant human relaxin (rhRLX) may have important therapeutic potential in acute heart failure and chronic kidney diseases, the effects of acute rhRLX administration against renal ischaemia/reperfusion (I/R) injury have never been investigated. Using a rat model of 1‐hr bilateral renal artery occlusion followed by 6‐hr reperfusion, we investigated the effects of rhRLX (5 μg/Kg i.v.) given both at the beginning and after 3 hrs of reperfusion. Acute rhRLX administration attenuated the functional renal injury (increase in serum urea and creatinine), glomerular dysfunction (decrease in creatinine clearance) and tubular dysfunction (increase in urinary excretion of N‐acetyl‐β‐glucosaminidase) evoked by renal I/R. These beneficial effects were accompanied by a significant reduction in local lipid peroxidation, free radical‐induced DNA damage and increase in the expression/activity of the endogenous antioxidant enzymes Mn‐ and CuZn‐superoxide dismutases (SOD). Furthermore, rhRLX administration attenuated the increase in leucocyte activation, as suggested by inhibition of myeloperoxidase activity, intercellular‐adhesion‐molecule‐1 expression, interleukin (IL)‐1β, IL‐18 and tumour necrosis factor‐α production as well as increase in IL‐10 production. Interestingly, the reduced oxidative stress status and neutrophil activation here reported were associated with rhRLX‐induced activation of endothelial nitric oxide synthase and up‐regulation of inducible nitric oxide synthase, possibly secondary to activation of Akt and the extracellular signal‐regulated protein kinase (ERK) 1/2, respectively. Thus, we report herein that rhRLX protects the kidney against I/R injury by a mechanism that involves changes in nitric oxide signalling pathway.  相似文献   
84.
Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light‐emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described in the luminous hydromedusan Aequorea victoria in the early 1960s, bioluminescent proteins have greatly contributed to the design and initiation of ongoing cell‐based clinical trials on cardiovascular diseases. In conjunction with advances in reporter gene technology, BLI provides valuable information about the location and functional status of regenerative cells implanted into numerous animal models of disease. The purpose of this review was to present the great potential of BLI, among other existing imaging modalities, to refine effectiveness and underlying mechanisms of cardiac cell therapy. We recount the first discovery of natural primary compounds with light‐emitting capabilities, and follow their applications to bioanalysis. We also illustrate insights and perspectives on BLI to illuminate current efforts in cardiac regeneration, where the future is bright.  相似文献   
85.
Previously considered as toxic by-products of aerobic metabolism, reactive oxygen species (ROS) are emerging as essential signaling molecules in eukaryotes. Recent evidence showed that maintenance of ROS homeostasis during female gametophyte development is crucial for embryo sac patterning and fertilization. Although ROS are exclusively detected in the central cell of mature embryo sacs, the study of mutants deficient in ROS homeostasis suggests that controlled oxidative bursts might take place earlier during gametophyte development. Also, a ROS burst that depends on pollination takes place inside the embryo sac. This oxidative response might be required for pollen tube growth arrest and for sperm cell release. In this mini-review, we will focus on new insights into the role of ROS during female gametophyte development and fertilization. Special focus will be made on the mitochondrial Mn-Superoxide dismutase (MSD1), which has been recently reported to be essential for maintaining ROS homeostasis during embryo sac formation.  相似文献   
86.
Mycobacterium tuberculosis (Mtb) is thought to preferentially rely on fatty acid metabolism to both establish and maintain chronic infections. Its metabolic network, however, allows efficient co-catabolism of multiple carbon substrates. To gain insight into the importance of carbohydrate substrates for Mtb pathogenesis we evaluated the role of glucose phosphorylation, the first reaction in glycolysis. We discovered that Mtb expresses two functional glucokinases. Mtb required the polyphosphate glucokinase PPGK for normal growth on glucose, while its second glucokinase GLKA was dispensable. 13C-based metabolomic profiling revealed that both enzymes are capable of incorporating glucose into Mtb''s central carbon metabolism, with PPGK serving as dominant glucokinase in wild type (wt) Mtb. When both glucokinase genes, ppgK and glkA, were deleted from its genome, Mtb was unable to use external glucose as substrate for growth or metabolism. Characterization of the glucokinase mutants in mouse infections demonstrated that glucose phosphorylation is dispensable for establishing infection in mice. Surprisingly, however, the glucokinase double mutant failed to persist normally in lungs, which suggests that Mtb has access to glucose in vivo and relies on glucose phosphorylation to survive during chronic mouse infections.  相似文献   
87.
88.
89.
In this study, we examine the dietary protein to carbohydrate ratio (P:C) on the mitochondrial functions of two Drosophila melanogaster mtDNA haplotypes. We investigated multiple physiological parameters on flies fed with either 1:12 P:C or 1:3 P:C diets. Our results provide experimental evidence that a specific haplotype has a reduction of complex I activity when the flies are fed with the 1:12 P:C diet. This study is of particular importance to understand the influence of diet on mitochondrial evolution in invasive and broadly distributed species including humans.  相似文献   
90.
NDUFV1 mutations have been related to encephalopathic phenotypes due to mitochondrial energy metabolism disturbances. In this study, we report two siblings affected by a diffuse leukodystrophy, who carry the NDUFV1 c.1156C>T (p.Arg386Cys) missense mutation and a novel 42-bp deletion. Bioinformatic and molecular analysis indicated that this deletion lead to the synthesis of mRNA molecules carrying a premature stop codon, which might be degraded by the nonsense-mediated decay system. Our results add information on the molecular basis and the phenotypic features of mitochondrial disease caused by NDUFV1 mutations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号