首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   12篇
  国内免费   1篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   4篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
41.
Few studies have directly measured sulfate reduction at hydrothermal vents, and relatively little is known about how environmental or ecological factors influence rates of sulfate reduction in vent environments. A better understanding of microbially mediated sulfate reduction in hydrothermal vent ecosystems may be achieved by integrating ecological and geochemical data with metabolic rate measurements. Here we present rates of microbially mediated sulfate reduction from three distinct hydrothermal vents in the Middle Valley vent field along the Juan de Fuca Ridge, as well as assessments of bacterial and archaeal diversity, estimates of total biomass and the abundance of functional genes related to sulfate reduction, and in situ geochemistry. Maximum rates of sulfate reduction occurred at 90 °C in all three deposits. Pyrosequencing and functional gene abundance data revealed differences in both biomass and community composition among sites, including differences in the abundance of known sulfate-reducing bacteria. The abundance of sequences for Thermodesulfovibro-like organisms and higher sulfate reduction rates at elevated temperatures suggests that Thermodesulfovibro-like organisms may have a role in sulfate reduction in warmer environments. The rates of sulfate reduction presented here suggest that—within anaerobic niches of hydrothermal deposits—heterotrophic sulfate reduction may be quite common and might contribute substantially to secondary productivity, underscoring the potential role of this process in both sulfur and carbon cycling at vents.  相似文献   
42.
Carbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) μmol CaCO3 • cm−2 • yr−1, respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.Subject terms: Microbial ecology, Water microbiology, Biogeochemistry, Biogeochemistry, Biofilms  相似文献   
43.
44.
Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic methane oxidation, we developed a novel continuous-flow anaerobic methane incubation system (AMIS) that simulates the majority of in situ conditions and supports the metabolism and growth of anaerobic methanotrophic archaea. We incubated sediments collected from within and outside a methane cold seep in Monterey Canyon, Calif., for 24 weeks on the AMIS system. Anaerobic methane oxidation was measured in all sediments after incubation on AMIS, and quantitative molecular techniques verified the increases in methane-oxidizing archaeal populations in both seep and nonseep sediments. Our results demonstrate that the AMIS system stimulated the maintenance and growth of anaerobic methanotrophic archaea, and possibly their syntrophic, sulfate-reducing partners. Our data demonstrate the utility of combining physiological and molecular techniques to quantify the growth and metabolic activity of anaerobic microbial consortia. Further experiments with the AMIS system should provide a better understanding of the biological mechanisms of methane oxidation in anoxic marine environments. The AMIS may also enable the enrichment, purification, and isolation of methanotrophic archaea as pure cultures or defined syntrophic consortia.  相似文献   
45.
The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaerobic methanotrophs and the syntrophic sulfate-reducing bacteria, we incubated marine sediments using an anoxic, continuous-flow bioreactor during two experiments at different advective porewater flow rates. We examined the growth kinetics of anaerobic methanotrophs and Desulfosarcina-like sulfate-reducing bacteria using quantitative PCR as a proxy for cell counts, and measured methane oxidation rates using membrane-inlet mass spectrometry. Our data show that the specific growth rates of ANME-1 and ANME-2 archaea differed in response to porewater flow rates. ANME-2 methanotrophs had the highest rates in lower-flow regimes (mu(ANME-2) = 0.167 . week(-1)), whereas ANME-1 methanotrophs had the highest rates in higher-flow regimes (mu(ANME-1) = 0.218 . week(-1)). In both incubations, Desulfosarcina-like sulfate-reducing bacterial growth rates were approximately 0.3 . week(-1), and their growth dynamics suggested that sulfate-reducing bacterial growth might be facilitated by, but not dependent upon, an established anaerobic methanotrophic population. ANME-1 growth rates corroborate field observations that ANME-1 archaea flourish in higher-flow regimes. Our growth and methane oxidation rates jointly demonstrate that anaerobic methanotrophs are capable of attaining substantial growth over a range of environmental conditions used in these experiments, including relatively low methane partial pressures.  相似文献   
46.
Tannic acid-stained microtubules with 12, 13, and 15 protofilaments   总被引:8,自引:8,他引:0       下载免费PDF全文
Subunit structure in the walls of sectioned microtubules was first noted by Ledbetter and Porter (6), who clearly showed that certain microtubules of plant meristematic cells have 13 wall protofilaments when seen in cross section. Earlier, protofilaments of microtubular elements had been described in negatively stained material, although exact counts of their number were difficult to obtain. In microtubular elements of axonemes, some success has been achieved in visualizing protofilaments in conventionally fixed and sectioned material (8, 10); much less success has been achieved in identifying and counting protofilaments of singlet cytoplasmic microtubules. By using glutaraldehyde-tannic acid fixation, as described by Misuhira and Futaesaku (7), Tilney et al. (12) studied microtubules from a number of sources and found that all have 13 protofilaments comprising their walls. These authors note that "...the number of subunits and their arrangement as protofilaments appear universal...". Preliminary studies of ventral nerve cord of crayfish fixed in glutaraldehyde-tannic acid indicated that axonal microtubules in this material possess only 12 protofilaments (4). On the basis of this observation, tannic acid preparations of several other neuronal and non-neuronal systems were examined. Protofilaments in microtubules from these several cell types are clearly demonstrated, and counts have been made which show that some kinds of microtubules have more or fewer protofilaments than the usual 13 and that at least one kind of microtubule has an even rather than an odd number.  相似文献   
47.
The cps cluster of Escherichia coli K-12 comprises genes involved in synthesis of capsular polysaccharide colanic acid. Part of the E. coli K-12 cps region has been cloned and sequenced and compared to its Salmonella enterica LT2 counterpart. The cps genes from the two organisms are homologous; in the case of the LT2 genes, with G+C content of 0.61 and codons characteristic of high G+C species, it seems clear that they have been acquired relatively recently by lateral transfer from a high G+C species. The K-12 form of these cps genes is closely related to those of LT2 so must derive from the same high G+C species, but it appears to have transferred much earlier such that random genetic drift has brought P3 (the corrected G+C content of codon base 3) down from 0.77 to 0.64, more than halfway to the E. coli average of 0.57. We estimate, using an equation developed by Sueoka, that the lateral transfer to E. coli took place approximately 45 million years ago. This is the first report we are aware of demonstrating the expected adjustment of P3 after lateral transfer between species with different G+C content DNA.   相似文献   
48.

Background  

The combination of mass spectrometry and solution phase amide hydrogen/deuterium exchange (H/D exchange) experiments is an effective method for characterizing protein dynamics, and protein-protein or protein-ligand interactions. Despite methodological advancements and improvements in instrumentation and automation, data analysis and display remains a tedious process. The factors that contribute to this bottleneck are the large number of data points produced in a typical experiment, each requiring manual curation and validation, and then calculation of the level of backbone amide exchange. Tools have become available that address some of these issues, but lack sufficient integration, functionality, and accessibility required to address the needs of the H/D exchange community. To date there is no software for the analysis of H/D exchange data that comprehensively addresses these issues.  相似文献   
49.
The decomposition of marine plankton in two-chamber, seawater-filled microbial fuel cells (MFCs) has been investigated and related to resulting chemical changes, electrode potentials, current efficiencies, and microbial diversity. Six experiments were run at various discharge potentials, and a seventh served as an open-circuit control. The plankton consisted of a mixture of freshly captured phytoplankton and zooplankton (0.21 to 1 mm) added at an initial batch concentration of 27.5 mmol liter−1 particulate organic carbon (OC). After 56.7 days, between 19.6 and 22.2% of the initial OC remained, sulfate reduction coupled to OC oxidation accounted for the majority of the OC that was degraded, and current efficiencies (of the active MFCs) were between 11.3 and 15.5%. In the open-circuit control cell, anaerobic plankton decomposition (as quantified by the decrease in total OC) could be modeled by three terms: two first-order reaction rate expressions (0.79 day−1 and 0.037 day−1, at 15°C) and one constant, no-reaction term (representing 10.6% of the initial OC). However, in each active MFC, decomposition rates increased during the third week, lagging just behind periods of peak electricity generation. We interpret these decomposition rate changes to have been due primarily to the metabolic activity of sulfur-reducing microorganisms at the anode, a finding consistent with the electrochemical oxidization of sulfide to elemental sulfur and the elimination of inhibitory effects of dissolved sulfide. Representative phylotypes, found to be associated with anodes, were allied with Delta-, Epsilon-, and Gammaproteobacteria as well as the Flavobacterium-Cytophaga-Bacteroides and Fusobacteria. Based upon these results, we posit that higher current efficiencies can be achieved by optimizing plankton-fed MFCs for direct electron transfer from organic matter to electrodes, including microbial precolonization of high-surface-area electrodes and pulsed flowthrough additions of biomass.  相似文献   
50.
Genes essential for the production of a linear, bacterial (1-->3)-beta- glucan, curdlan, have been cloned for the first time from Agrobacterium sp. ATCC31749. The genes occurred in two, nonoverlapping, genomic fragments that complemented different sets of curdlan( crd )-deficient transposon-insertion mutations. These were detected as colonies that failed to stain with aniline blue, a (1-->3)-beta-glucan specific dye. One fragment carried a biosynthetic gene cluster (locus I) containing the putative curdlan synthase gene, crdS, and at least two other crd genes. The second fragment may contain only a single crd gene (locus II). Determination of the DNA sequence adjacent to several locus I mutations revealed homology to known sequences only in the cases of crdS mutations. Complete sequencing of the 1623 bp crdS gene revealed highest similarities between the predicted CrdS protein (540 amino acids) and glycosyl transferases with repetitive action patterns. These include bacterial cellulose synthases (and their homologs), which form (1-->4)-beta-glucans. No similarity was detected with putative (1-->3)- beta-glucan synthases from yeasts and filamentous fungi. Whatever the determinants of the linkage specificity of these beta-glucan synthases might be, these results raise the possibility that (1-->3)-beta-glucans and (1-->4)-beta-glucans are formed by related catalytic polypeptides.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号