首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2190篇
  免费   133篇
  2323篇
  2024年   3篇
  2023年   3篇
  2022年   21篇
  2021年   40篇
  2020年   23篇
  2019年   39篇
  2018年   64篇
  2017年   37篇
  2016年   46篇
  2015年   94篇
  2014年   141篇
  2013年   177篇
  2012年   225篇
  2011年   175篇
  2010年   112篇
  2009年   114篇
  2008年   166篇
  2007年   124篇
  2006年   115篇
  2005年   125篇
  2004年   106篇
  2003年   99篇
  2002年   77篇
  2001年   15篇
  2000年   12篇
  1999年   19篇
  1998年   32篇
  1997年   20篇
  1996年   12篇
  1995年   10篇
  1994年   13篇
  1993年   8篇
  1992年   4篇
  1991年   5篇
  1990年   6篇
  1989年   5篇
  1988年   9篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1976年   1篇
  1972年   2篇
排序方式: 共有2323条查询结果,搜索用时 15 毫秒
901.
902.
903.
Roth TA  Minasov G  Morandi S  Prati F  Shoichet BK 《Biochemistry》2003,42(49):14483-14491
Beta-lactamases are the most widespread resistance mechanism to beta-lactam antibiotics, such as the penicillins and cephalosporins. Transition-state analogues that bind to the enzymes with nanomolar affinities have been introduced in an effort to reverse the resistance conferred by these enzymes. To understand the origins of this affinity, and to guide design of future inhibitors, double-mutant thermodynamic cycle experiments were undertaken. An unexpected hydrogen bond between the nonconserved Asn289 and a key inhibitor carboxylate was observed in the X-ray crystal structure of a 1 nM inhibitor (compound 1) in complex with AmpC beta-lactamase. To investigate the energy of this hydrogen bond, the mutant enzyme N289A was made, as was an analogue of 1 that lacked the carboxylate (compound 2). The differential affinity of the four different protein and analogue complexes indicates that the carboxylate-amide hydrogen bond contributes 1.7 kcal/mol to overall binding affinity. Synthesis of an analogue of 1 where the carboxylate was replaced with an aldehyde led to an inhibitor that lost all this hydrogen bond energy, consistent with the importance of the ionic nature of this hydrogen bond. To investigate the structural bases of these energies, X-ray crystal structures of N289A/1 and N289A/2 were determined to 1.49 and 1.39 A, respectively. These structures suggest that no significant rearrangement occurs in the mutant versus the wild-type complexes with both compounds. The mutant enzymes L119A and L293A were made to investigate the interaction between a phenyl ring in 1 and these residues. Whereas deletion of the phenyl itself diminishes affinity by 5-fold, the double-mutant cycles suggest that this energy does not come through interaction with the leucines, despite the close contact in the structure. The energies of these interactions provide key information for the design of improved inhibitors against beta-lactamases. The high magnitude of the ion-dipole interaction between Asn289 and the carboxylate of 1 is consistent with the idea that ionic interactions can provide significant net affinity in inhibitor complexes.  相似文献   
904.
The synthesis and biological evaluation of three series of 6-phosphogluconate (6PG) analogues is described. (2R)-2-Methyl-4,5-dideoxy, (2R)-2-methyl-4-deoxy and 2,4-dideoxy analogues of 6PG were tested as inhibitors of 6-phosphogluconate dehydrogenase (6PGDH) from sheep liver and also Trypanosoma brucei where the enzyme is a validated drug target. Among the three series of analogues, seven compounds were found to competitively inhibit 6PGDH from T. brucei and sheep liver enzymes at micromolar concentrations. Six inhibitors belong to the (2R)-2-methyl-4-deoxy series (6, 8, 10, 12, 21, 24) and one is a (2R)-2-methyl-4,5-dideoxy analogue (29b). The 2,4-dideoxy analogues of 6PG did not inhibit both enzymes. The trypanocidal effect of the compounds was also evaluated in vitro against T. brucei rhodesiense as well as other related trypanosomatid parasites (i.e., Trypanosoma cruzi and Leishmania donovani).  相似文献   
905.
Neisseria gonorrhoeae is the etiological agent of gonorrhoea, an infectious disease characterized by acute inflammation of the urogenital tract with a massive infiltration of neutrophils. Polymorphonuclear leukocyte recruitment is one of the activities of the recently described interleukin-17A (IL-17A); thus, we analyzed the serum concentration of IL-17A, together with IL-23 and interferon-γ (IFN-γ), in 27 patients with gonorrhoea. The concentration of these cytokines in patients' sera was significantly higher than that detected in healthy controls and an inverse correlation was found between the concentrations of IL-17A and IFN-γ. This is the first report showing a significant increase of IL-17A and IL-23 serum levels in patients with gonorrhoea, suggesting new players in the immune response to N. gonorrhoeae.  相似文献   
906.
Bifidobacteria are Gram-positive inhabitants of the human gastrointestinal tract that have evolved close interaction with their host and especially with the host''s immune system. The molecular mechanisms underlying such interactions, however, are largely unidentified. In this study, we investigated the immunomodulatory potential of Bifidobacterium bifidum MIMBb75, a bacterium of human intestinal origin commercially used as a probiotic. Particularly, we focused our attention on TgaA, a protein expressed on the outer surface of MIMBb75''s cells and homologous to other known bacterial immunoactive proteins. TgaA is a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP). We ran immunological experiments stimulating dendritic cells (DCs) with the B. bifidum MIMBb75 and TgaA, with the result that both the bacterium and the protein activated DCs and triggered interleukin-2 (IL-2) production. In addition, we observed that the heterologous expression of TgaA in Bifidobacterium longum transferred to the bacterium the ability to induce IL-2. Subsequently, immunological experiments performed using two purified recombinant proteins corresponding to the single domains LT and CHAP demonstrated that the CHAP domain is the immune-reactive region of TgaA. Finally, we also showed that TgaA-dependent activation of DCs requires the protein CD14, marginally involves TRIF, and is independent of Toll-like receptor 4 (TLR4) and MyD88. In conclusion, our study suggests that the bacterial CHAP domain is a novel microbe-associated molecular pattern actively participating in the cross talk mechanisms between bifidobacteria and the host''s immune system.  相似文献   
907.
Marker-free transgenic white poplar (Populus alba L., cv ‘Villafranca’) plants, expressing the PsMT A1 gene from Pisum sativum for a metallothionein-like protein, were produced by Agrobacterium tumefaciens-mediated transformation. The 35SCaMV-PsMT A1 -NosT cassette was inserted into the ipt-type vector pMAT22. The occurrence of the abnormal ipt-shooty phenotype allowed the visual selection of transformants, while the yeast site-specific recombination R/RS system was responsible for the excision of the undesired vector sequences with the consequent recovery of normal marker-free transgenic plants. Molecular analyses confirmed the presence of the 35SCaMV-PsMT A1 -NosT cassette and transgene expression. Five selected lines were further characterized, revealing the ability to withstand heavy metal toxicity. They survived 0.1 mM CuCl2, a concentration which strongly affected the nontransgenic plants. Moreover, root development was only slightly affected by the ectopic expression of the transgene. Reactive oxygen species were accumulated to a lower extent in leaf tissues of multi-auto-transformation (MAT)-PsMTA1 plants exposed to copper and zinc, compared to control plants. Tolerance to photo-oxidative stress induced by paraquat was another distinctive feature of the MAT-PsMTA1 lines. Finally, low levels of DNA damage were detected by quantifying the amounts of 8-hydroxy-2′-deoxyguanosine in leaf tissues of the transgenic plants exposed to copper.  相似文献   
908.
Background:  Several studies report an inhibitory effect of probiotics on Helicobacter pylori .
Aim:  To test whether Lactobacillus reuteri ATCC 55730 reduces H. pylori intragastric load in vivo, decreases dyspeptic symptoms, and affects eradication rates after conventional treatment.
Materials and Methods:  In a double-blind placebo-controlled study, 40 H. pylori -positive subjects were given L. reuteri once a day for 4 weeks or placebo. All underwent upper endoscopy, 13C-urea breath test, and H. pylori stool antigen determination at entry and 13C-urea breath test and H. pylori stool antigen (used as both qualitative and semiquantitative markers) after 4 weeks of treatment. Sequential treatment was administered subsequently to all.
Results:  In vivo, L. reuteri reduces H. pylori load as semiquantitatively assessed by both 13C-urea breath test δ -value and H. pylori stool antigen quantification after 4 weeks of treatment ( p <  .05). No change was shown in patients receiving placebo. L. reuteri administration was followed by a significant decrease in the Gastrointestinal Symptom Rating Scale as compared to pretreatment value ( p <  .05) that was not present in those receiving placebo ( p =  not significant). No difference in eradication rates was observed.
Conclusions:  L. reuteri effectively suppresses H. pylori infection in humans and decreases the occurrence of dyspeptic symptoms. Nevertheless, it does not seem to affect antibiotic therapy outcome.  相似文献   
909.
910.
Versatile peroxidase (VP) from Bjerkandera adusta is a structural hybrid between lignin (LiP) and manganese (MnP) peroxidase. This hybrid combines the catalytic properties of the two above peroxidases, being able to oxidize typical LiP and MnP substrates. The catalytic mechanism is that of classical peroxidases, where the substrate oxidation is carried out by a two-electron multistep reaction at the expense of hydrogen peroxide. Elucidation of the structures of intermediates in this process is crucial for understanding the mechanism of substrate oxidation. In this work, the reaction of H(2)O(2) with the enzyme in the absence of substrate has been investigated with electron paramagnetic resonance (EPR) spectroscopy. The results reveal an EPR signal with partially resolved hyperfine structure typical of an organic radical. The yield of this radical is approximately 30%. Progressive microwave power saturation measurements indicate that the radical is weakly coupled to a paramagnetic metal ion, suggesting an amino acid radical in moderate distance from the ferryl heme. A tryptophan radical was identified as a protein-based radical formed during the catalytic mechanism of VP from Bjerkandera adusta through X-band and high-field EPR measurements at 94 GHz, aided by computer simulations for both frequency bands. A close analysis of the theoretical model of the VP from Bjerkandera sp. shows the presence of a tryptophan residue near to the heme prosthetic group, which is solvent-exposed as in the case of LiP and other VPs. The catalytic role of this residue in a long-range electron-transfer pathway is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号