首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1728篇
  免费   275篇
  2003篇
  2022年   21篇
  2021年   22篇
  2019年   15篇
  2017年   24篇
  2016年   37篇
  2015年   32篇
  2014年   48篇
  2013年   65篇
  2012年   90篇
  2011年   89篇
  2010年   50篇
  2009年   54篇
  2008年   72篇
  2007年   88篇
  2006年   67篇
  2005年   59篇
  2004年   55篇
  2003年   64篇
  2002年   59篇
  2001年   45篇
  2000年   46篇
  1999年   46篇
  1998年   29篇
  1997年   33篇
  1996年   23篇
  1995年   27篇
  1994年   18篇
  1993年   20篇
  1992年   40篇
  1991年   42篇
  1990年   32篇
  1989年   35篇
  1988年   24篇
  1987年   30篇
  1986年   31篇
  1985年   40篇
  1984年   32篇
  1983年   26篇
  1982年   32篇
  1981年   33篇
  1980年   20篇
  1979年   23篇
  1978年   23篇
  1977年   22篇
  1976年   22篇
  1975年   26篇
  1974年   29篇
  1973年   15篇
  1971年   13篇
  1969年   15篇
排序方式: 共有2003条查询结果,搜索用时 11 毫秒
61.
62.
63.
64.
We investigated the distribution of S-phase cells during regeneration of the imaginal wing disc of Drosophila melanogaster following excision of 30 degrees, 90 degrees, and 150 degrees sectors of tissue. The fragments were cultured in adult abdomens for 1-5 days, labeled in vitro with tritiated thymidine, serially sectioned, and subjected to autoradiography. There was negligible thymidine incorporation in unoperated controls and in the undamaged parts of the operated discs, indicating that DNA synthesis in undamaged tissue is terminated during the first day of the culture period. Almost all of the fragments from which tissue had been removed, as well as controls which were simply cut without the removal of any tissue, showed a cluster of labeled cells (blastema) even after only 1 day of culture. The blastemas in control discs were short-lived, with over 50% of these discs showing no blastema by the third day in culture. Blastemas in discs from which sectors were removed were more persistent; the time at which 50% of the fragments no longer showed a blastema was 4 days for the -30 degrees fragments, 5 days for the -90 degrees fragments, and greater than 5 days for the -150 degrees fragments. The average blastema size, measured as number of labeled cells, was directly related to the amount of tissue removed, and in most cases did not change significantly during the culture period. Both wound edges incorporated tritiated thymidine initially and the S-phase cells remained tightly clustered throughout regeneration; maximum blastema width varied from about 8 to 25 cell diameters. The results are consistent with the idea that regenerative cell proliferation is stimulated and maintained by positional information discontinuities, and terminated when these discontinuities are resolved by the addition of an appropriate number of new cells.  相似文献   
65.
Endothelial cell proliferation is a critical step in angiogenesis and requires a coordinated response to soluble growth factors and the extracellular matrix. As focal adhesion kinase (FAK) integrates signals from both adhesion events and growth factor stimulation, we investigated its role in endothelial cell proliferation. Expression of a dominant-negative FAK protein, FAK-related nonkinase (FRNK), impaired phosphorylation of FAK and blocked DNA synthesis in response to multiple angiogenic stimuli. These results coincided with elevated cyclin-dependent kinase inhibitors (CDKIs) p21/Cip and p27/Kip, as a consequence of impaired degradation. FRNK inhibited the expression of Skp2, an F-box protein that targets CDKIs, by inhibiting mitogen-induced mRNA. The FAK-regulated degradation of p27/Kip was Skp2 dependent, while levels of p21/Cip were regulated independent of Skp2. Skp2 is required for endothelial cell proliferation as a consequence of degrading p27. Finally, knockdown of both p21 and p27 in FRNK-expressing cells completely restored mitogen-induced endothelial cell proliferation. These data demonstrate a critical role for FAK in the regulation of CDKIs through two independent mechanisms: Skp2 dependent and Skp2 independent. They also provide important insights into the requirement of focal adhesion kinase for normal vascular development and reveal novel regulatory control points for angiogenesis.  相似文献   
66.
The synthesis of nitric oxide (NO) from L-arginine has been demonstrated in several cell types. Both constitutive and inducible forms of NO synthase have been described in different cells. We purified the constitutive form of NO synthase enzyme in human neutrophils using a two-column procedure. Crude 100,000g supernatant of human neutrophils was passed through a 2'-5'-ADP-agarose column followed by a DEAE-Bio-Gel A anion exchange column. NO synthase enzyme migrated as a single band (MW approximately 130,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Its activity was dependent upon nicotinamide adenine dinucleotide phosphate (NADPH) and (6R)-tetrahydro-L-biopterin (BH4). In addition, flavin adenine dinucleotide (FAD) was also found to be essential for its maximal activity. A second NADPH, FAD-dependent component (MW approximately 22kD) was also found consistently on the SDS-PAGE gel. These observations suggest co-regulation between NO synthase enzyme and this NADPH, FAD-dependent component, which may be associated with the superoxide radical generating system.  相似文献   
67.

Background  

Recent translocations of autosomal regions to the sex chromosomes represent important systems for identifying the evolutionary forces affecting convergent patterns of sex-chromosome heteromorphism. Additions to the sex chromosomes have been reported in the melanica and robusta species groups, two sister clades of Drosophila. The close relationship between these two species groups and the similarity of their rearranged karyotypes motivates this test of alternative hypotheses; the rearranged sex chromosomes in both groups are derived through a common origin, or the rearrangements are derived through at least two independent origins. Here we examine chromosomal arrangement in representatives of the melanica and the robusta species groups and test these alternative hypotheses using a phylogenetic approach.  相似文献   
68.

Background

Bone mass is maintained by continuous remodeling through repeated cycles of bone resorption by osteoclasts and bone formation by osteoblasts. This remodeling process is regulated by many systemic and local factors.

Methodology/Principal Findings

We identified collagen triple helix repeat containing-1 (Cthrc1) as a downstream target of bone morphogenetic protein-2 (BMP2) in osteochondroprogenitor-like cells by PCR-based suppression subtractive hybridization followed by differential hybridization, and found that Cthrc1 was expressed in bone tissues in vivo. To investigate the role of Cthrc1 in bone, we generated Cthrc1-null mice and transgenic mice which overexpress Cthrc1 in osteoblasts (Cthrc1 transgenic mice). Microcomputed tomography (micro-CT) and bone histomorphometry analyses showed that Cthrc1-null mice displayed low bone mass as a result of decreased osteoblastic bone formation, whereas Cthrc1 transgenic mice displayed high bone mass by increase in osteoblastic bone formation. Osteoblast number was decreased in Cthrc1-null mice, and increased in Cthrc1 transgenic mice, respectively, while osteoclast number had no change in both mutant mice. In vitro, colony-forming unit (CFU) assays in bone marrow cells harvested from Cthrc1-null mice or Cthrc1 transgenic mice revealed that Cthrc1 stimulated differentiation and mineralization of osteoprogenitor cells. Expression levels of osteoblast specific genes, ALP, Col1a1, and Osteocalcin, in primary osteoblasts were decreased in Cthrc1-null mice and increased in Cthrc1 transgenic mice, respectively. Furthermore, BrdU incorporation assays showed that Cthrc1 accelerated osteoblast proliferation in vitro and in vivo. In addition, overexpression of Cthrc1 in the transgenic mice attenuated ovariectomy-induced bone loss.

Conclusions/Significance

Our results indicate that Cthrc1 increases bone mass as a positive regulator of osteoblastic bone formation and offers an anabolic approach for the treatment of osteoporosis.  相似文献   
69.
We describe a systematic study of how macrocyclization in the P1–P3 region of hydroxyethylamine-based inhibitors of β-site amyloid precursor protein (APP)-cleaving enzyme (BACE1) modulates in vitro activity. This study reveals that in a number of instances macrocyclization of bis-terminal dienes leads to improved potency toward BACE1 and selectivity against cathepsin D (CatD), as well as greater amyloid β-peptide (Aβ)-lowering activity in HEK293T cells stably expressing APPSW. However, for several closely related analogs the benefits of macrocyclization are attenuated by the effects of other structural features in different regions of the molecules. X-ray crystal structures of three of these novel macrocyclic inhibitors bound to BACE1 revealed their binding conformations and interactions with the enzyme.  相似文献   
70.
We have previously reported on the functional interaction of Lipid II with human alpha-defensins, a class of antimicrobial peptides. Lipid II is an essential precursor for bacterial cell wall biosynthesis and an ideal and validated target for natural antibiotic compounds. Using a combination of structural, functional and in silico analyses, we present here the molecular basis for defensin-Lipid II binding. Based on the complex of Lipid II with Human Neutrophil peptide-1, we could identify and characterize chemically diverse low-molecular weight compounds that mimic the interactions between HNP-1 and Lipid II. Lead compound BAS00127538 was further characterized structurally and functionally; it specifically interacts with the N-acetyl muramic acid moiety and isoprenyl tail of Lipid II, targets cell wall synthesis and was protective in an in vivo model for sepsis. For the first time, we have identified and characterized low molecular weight synthetic compounds that target Lipid II with high specificity and affinity. Optimization of these compounds may allow for their development as novel, next generation therapeutic agents for the treatment of Gram-positive pathogenic infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号