首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   17篇
  327篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   14篇
  2013年   22篇
  2012年   21篇
  2011年   20篇
  2010年   6篇
  2009年   11篇
  2008年   23篇
  2007年   21篇
  2006年   18篇
  2005年   15篇
  2004年   30篇
  2003年   10篇
  2002年   22篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   10篇
  1997年   5篇
  1996年   2篇
  1995年   5篇
  1994年   7篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1971年   1篇
排序方式: 共有327条查询结果,搜索用时 0 毫秒
191.
FpvA is an outer membrane transporter involved in iron uptake by the siderophore pyoverdine (Pvd) in Pseudomonas aeruginosa. This transporter, like all other proteins of the same family, consists of a transmembrane 22 beta-stranded barrel occluded by a plug domain. The beta-strands of the barrel are connected by large extracellular loops and short periplasmic turns. Site-directed mutagenesis was carried out on FpvA to identify the extracellular loops or parts of these loops involved in the various stages of Pvd-Fe uptake. The G286C, W362C, and W434C mutations in loops L1, L3, and L4, respectively, disturbed the binding of the apo siderophore, as shown by time-resolved fluorescence spectroscopy. Iron uptake experiments followed by fluorescence resonance energy transfer (FRET) or using 55Fe indicated that residues W434 and G701 and, therefore, loops L4 and L9 must be involved in Pvd-Fe uptake by FpvA. The two corresponding mutants incorporated smaller than normal amounts of 55Fe into cells, and no Pvd recycling on FpvA was observed after iron release. Surprisingly, the S603C mutation in loop L7 increased the amount of Pvd-Fe transported. Our results suggest that W434 (L4), S603 (L7), and G701 (L9) are involved in the mechanism of Pvd-Fe uptake.  相似文献   
192.
By means of intracerebral microdialysis effects of cholecystokinin peptides and neurotensin administered via the microdialysis probe have been studied on dopamine release and metabolism in the nucleus accumbens and neostriatum of the halothane anaesthetized male rat. Levels of extra cellular dopamine (DA) and its metabolites 3,4 dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were assessed in nuc. accumbens (rostral and caudal part) using high performance liquid chromatography in combination with electrochemical detection.

(1) In the rostral part of the nuc. accumbens CCK-8 (10 and 100 μM), CCK-33 (100 μM) but not CCK-4 (10 and 100 μM) increased the levels of DA in the perfusate without increasing the extracellular levels of DOPAC and HVA. (2) In the caudal nuc. accumbens CCK-8 and CCK-4 in concentrations of 10 μM and 100 μ M of CCK-33 had no effect on DA release and metabolism, since the extracellular levels of DA, DOPAC and HVA were not changed. (3) In the rostral nuc. accumbens perfusion with 10 μM of neurotensin but not with any other concentration of neurotensin (0.01, 0.1, 1 and 100 μM) increased the levels of DA in the extracellular fluid. (4) In the caudal nuc. accumbens a 40 min perfusion with neutrotensin produced a concentration dependent increase of the levels of DA in the perfusate (peak action at 10 μ M) which in this case was associated with increases in the extracellular levels of DOPAC and HVA. (5) By means of receptor autoradiography using (3-[125I]iodotyrosyl3) neurotensin it was found that a 40 min perfusion with this radioligand in the rostral nuc. accumbens reached a total volume of 0.051 mm3. The diffusion of the radioligand was limited to the rostral or caudal part of the nuc. accumbens depending upon the site of placement of the dialysis probe.

The results indicate the existence of cholecystokinin (CCK) receptors in the rostral nuc. accumbens, which are sensitive to CCK-8 and CCK-33 but not to CCK-4, and which facilitate DA release without producing any detectable increase in DA metabolites. In contrast, such receptors do not appear to play a similar role in the regulation of DA release in the caudal nuc. accumbens, where DA terminals contain CCK-like immunoreactivity. Furthermore, the results indicate that neurotensin receptors exist both in the rostral and caudal nuc. accumbens, where they inter alia enhance the release of DA. In the caudal nuc. accumbens these effects of neurotensin are also associated with an increase of DA metabolites, possibly suggesting that in this region neurotensin receptors may also control DA synthesis.  相似文献   

193.
BALB/c mammary adenocarcinoma cells engineered to express TNF-related apoptosis-inducing ligand (TRAIL)/APO-2 ligand (APO-2L) on their membrane (TSA-TRAIL) grow with kinetics similar to that of parental cells (TSA-pc) in vitro and in nu/nu mice. In contrast, TSA-TRAIL cells grow faster than TSA-pc in normal BALB/c mice. In DBA/2 mice, which differ from BALB/c mice at minor histocompatibility Ags, they also grow faster and display a higher percentage of tumor takes than TSA-pc. In fully histoincompatible C57BL/6 (B6) mice, TSA-TRAIL cells form evident tumors that are slowly rejected by most mice, but outgrow in a few. In contrast, TSA-pc cells are rejected at once by B6 mice. Since TRAIL/APO-2L induces apoptosis by interacting with a variety of specific receptors, this rapid growth in both syngeneic and allogeneic mice may be the result of an immunosuppressive mechanism. The following evidence supports this hypothesis: 1) TSA-TRAIL cells overcome the strong immunity against TSA-pc cells elicited in BALB/c mice by preimmunization with TSA cells engineered to release IL-4; 2) their rejection by B6 mice does not prime a CTL-mediated memory; 3) thymidine uptake by T lymphocytes unstimulated or stimulated by allogeneic cells is inhibited when TSA-TRAIL cells are added as third party cells; 4) CTL kill TSA-pc but not TSA-TRAIL cells in 48-h assays; and 5) activated lymphocytes interacting with TSA-TRAIL cells in vivo and in vitro undergo apoptosis.  相似文献   
194.
Genetic Recombination in Micromonospora   总被引:1,自引:0,他引:1       下载免费PDF全文
Biochemical mutants were obtained from Micromonospora chalcea, M. purpurea, and M. echinospora by using ultraviolet radiation or nitrosoguanidine. Crosses carried out between complementary nutritional mutants of the same species showed positive genetic interaction. Data are reported which indicate that the interaction between the crossed strains is due to genetic recombination. No evidence for interspecific genetic recombination was found.  相似文献   
195.
The influenza A virus NS1 protein, a virus-encoded alpha/beta interferon (IFN-alpha/beta) antagonist, appears to be a key regulator of protein expression in infected cells. We now show that NS1 protein expression results in enhancement of reporter gene activity from transfected plasmids. This effect appears to be mediated at the translational level, and it is reminiscent of the activity of the adenoviral virus-associated I (VAI) RNA, a known inhibitor of the antiviral, IFN-induced, PKR protein. To study the effects of the NS1 protein on viral and cellular protein synthesis during influenza A virus infection, we used recombinant influenza viruses lacking the NS1 gene (delNS1) or expressing truncated NS1 proteins. Our results demonstrate that the NS1 protein is required for efficient viral protein synthesis in COS-7 cells. This activity maps to the amino-terminal domain of the NS1 protein, since cells infected with wild-type virus or with a mutant virus expressing a truncated NS1 protein-lacking approximately half of its carboxy-terminal end-showed similar kinetics of viral and cellular protein expression. Interestingly, no major differences in host cell protein synthesis shutoff or in viral protein expression were found among NS1 mutant viruses in Vero cells. Thus, another viral component(s) different from the NS1 protein is responsible for the inhibition of host protein synthesis during viral infection. In contrast to the earlier proposal suggesting that the NS1 protein regulates the levels of spliced M2 mRNA, no effects on M2 protein accumulation were seen in Vero cells infected with delNS1 virus.  相似文献   
196.
Dexamethasone (DEX) is a well-known inhibitor of tumor necrosis factor (TNF) production when given shortly before lipopolysaccharide (LPS). However, DEX (10 mg/kg, ip) potentiates TNF production when administered 24–48 hr before LPS (16 μg/kg, ip). We have found that this is probably due to DEX induction of cytochrome P450 3A, which is known to produce nitric oxide (NO). The upregulating effect of DEX on TNF production is associated with increased NO production. Both the upregulation of NO and of TNF production by DEX are inhibited by co-administration of the P450 3A inhibitor troleandomycin (TAO, 40 mg/kg, ip). These data suggest that P450 3A-generated NO might be involved in TNF induction.  相似文献   
197.
The sugars streptose and dihydrohydroxystreptose (DHHS) are unique to the bacteria Streptomyces griseus and Coxiella burnetii, respectively. Streptose forms the central moiety of the antibiotic streptomycin, while DHHS is found in the O-antigen of the zoonotic pathogen C. burnetii. Biosynthesis of these sugars has been proposed to follow a similar path to that of TDP-rhamnose, catalyzed by the enzymes RmlA, RmlB, RmlC, and RmlD, but the exact mechanism is unclear. Streptose and DHHS biosynthesis unusually requires a ring contraction step that could be performed by orthologs of RmlC or RmlD. Genome sequencing of S. griseus and C. burnetii has identified StrM and CBU1838 proteins as RmlC orthologs in these respective species. Here, we demonstrate that both enzymes can perform the RmlC 3’’,5’’ double epimerization activity necessary to support TDP-rhamnose biosynthesis in vivo. This is consistent with the ring contraction step being performed on a double epimerized substrate. We further demonstrate that proton exchange is faster at the 3’’-position than the 5’’-position, in contrast to a previously studied ortholog. We additionally solved the crystal structures of CBU1838 and StrM in complex with TDP and show that they form an active site highly similar to those of the previously characterized enzymes RmlC, EvaD, and ChmJ. These results support the hypothesis that streptose and DHHS are biosynthesized using the TDP pathway and that an RmlD paralog most likely performs ring contraction following double epimerization. This work will support the elucidation of the full pathways for biosynthesis of these unique sugars.  相似文献   
198.
199.
In the brain, the human flavoprotein D ‐amino acid oxidase (hDAAO) is involved in the degradation of the gliotransmitter D ‐serine, an important modulator of NMDA‐receptor‐mediated neurotransmission; an increase in hDAAO activity (that yields a decrease in D ‐serine concentration) was recently proposed to be among the molecular mechanisms leading to the onset of schizophrenia susceptibility. This human flavoenzyme is a stable homodimer (even in the apoprotein form) that distinguishes from known D ‐amino acid oxidases because it shows the weakest interaction with the flavin cofactor in the free form. Instead, cofactor binding is significantly tighter in the presence of an active site ligand. In order to understand how hDAAO activity is modulated, we investigated the FAD binding process to the apoprotein moiety and compared the folding and stability properties of the holoenzyme and the apoprotein forms. The apoprotein of hDAAO can be distinguished from the holoenzyme form by the more “open” tertiary structure, higher protein fluorescence, larger exposure of hydrophobic surfaces, and higher sensitivity to proteolysis. Interestingly, the FAD binding only slightly increases the stability of hDAAO to denaturation by urea or temperature. Taken together, these results indicate that the weak cofactor binding is not related to protein (de)stabilization or oligomerization (as instead observed for the homologous enzyme from yeast) but rather should represent a means of modulating the activity of hDAAO. We propose that the absence in vivo of an active site ligand/substrate weakens the cofactor binding, yielding the inactive apoprotein form and thus avoiding excessive D ‐serine degradation.  相似文献   
200.
It is widely reported that some humic substances behave as exogenous auxins influencing root growth by mechanisms that are not yet completely understood. This study explores the hypothesis that the humic acids’ effects on root development involve a nitric oxide signaling. Maize seedlings were treated with HA 20 mg C L−1, IAA 0.1 nM, and NO donors (SNP or GSNO), in combination with either the auxin-signaling inhibitor PCIB, the auxin efflux inhibitor TIBA, or the NO scavenger PTIO. H+-transport-competent plasma membrane vesicles were isolated from roots to investigate a possible link between NO-induced H+-pump and HA bioactivity. Plants treated with either HA or SNP stimulated similarly the lateral roots emergence even in the presence of the auxin inhibitors, whereas NO scavenger diminished this effect. These treatments induced H+-ATPase stimulation by threefold, which was abolished by PTIO and decreased by auxin inhibitors. HA-induced NO synthesis was also detected in the sites of lateral roots emergence. These data depict a new scenario where the root development stimulation and the H+-ATPase activation elicited by either HA or exogenous IAA depend essentially on mechanisms that use NO as a messenger induced site-specifically in the early stages of lateral root development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号