首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97837篇
  免费   585篇
  国内免费   814篇
  2023年   27篇
  2022年   51篇
  2021年   93篇
  2020年   60篇
  2019年   91篇
  2018年   11917篇
  2017年   10746篇
  2016年   7561篇
  2015年   837篇
  2014年   525篇
  2013年   684篇
  2012年   4610篇
  2011年   13158篇
  2010年   12196篇
  2009年   8406篇
  2008年   10089篇
  2007年   11641篇
  2006年   512篇
  2005年   759篇
  2004年   1183篇
  2003年   1239篇
  2002年   977篇
  2001年   281篇
  2000年   180篇
  1999年   68篇
  1998年   61篇
  1997年   57篇
  1996年   46篇
  1995年   37篇
  1994年   39篇
  1993年   48篇
  1992年   43篇
  1991年   50篇
  1990年   31篇
  1989年   32篇
  1988年   31篇
  1987年   23篇
  1986年   20篇
  1984年   32篇
  1983年   30篇
  1982年   21篇
  1980年   18篇
  1979年   13篇
  1977年   13篇
  1976年   13篇
  1975年   20篇
  1972年   249篇
  1971年   282篇
  1965年   15篇
  1962年   24篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
881.
Codon usage analysis has been a classical area of study for decades and is important for evolution, mRNA translation, and new gene discovery. Recently, genome sequencing has made it possible to perform studies of the entire genome in plant kingdoms. The base composition of the coding sequence, codon usage pattern, codon pairs, and related indicators of relative synonymous codon usage (RSCU), including the Fop, Nc, RSCU, CAI and GC contents, were analyzed. We found that the GC content of single-celled algae is the highest, whereas dicotyledons are the lowest. Moreover, the base composition of plants is similar within the same family. In addition, the GC content of the second base of the codon is lower than the first and third base. In conclusion, the codon usage characteristics are opposite in Gramineae, single-celled algae, fern and dicotyledon, moss, and Pinaceae. Furthermore, the degree of codon usage bias is decreasing with evolution. Therefore, we hypothesize that the lower the plants, the more that they must optimize codons and that higher plants no longer need to optimize codons.  相似文献   
882.
883.
884.
Particle swarm optimization (PSO) is a population-based, stochastic optimization technique inspired by the social dynamics of birds. The PSO algorithm is rather sensitive to the control parameters, and thus, there has been a significant amount of research effort devoted to the dynamic adaptation of these parameters. The focus of the adaptive approaches has largely revolved around adapting the inertia weight as it exhibits the clearest relationship with the exploration/exploitation balance of the PSO algorithm. However, despite the significant amount of research efforts, many inertia weight control strategies have not been thoroughly examined analytically nor empirically. Thus, there are a plethora of choices when selecting an inertia weight control strategy, but no study has been comprehensive enough to definitively guide the selection. This paper addresses these issues by first providing an overview of 18 inertia weight control strategies. Secondly, conditions required for the strategies to exhibit convergent behaviour are derived. Finally, the inertia weight control strategies are empirically examined on a suite of 60 benchmark problems. Results of the empirical investigation show that none of the examined strategies, with the exception of a randomly selected inertia weight, even perform on par with a constant inertia weight.  相似文献   
885.
We propose Turing Learning, a novel system identification method for inferring the behavior of natural or artificial systems. Turing Learning simultaneously optimizes two populations of computer programs, one representing models of the behavior of the system under investigation, and the other representing classifiers. By observing the behavior of the system as well as the behaviors produced by the models, two sets of data samples are obtained. The classifiers are rewarded for discriminating between these two sets, that is, for correctly categorizing data samples as either genuine or counterfeit. Conversely, the models are rewarded for ‘tricking’ the classifiers into categorizing their data samples as genuine. Unlike other methods for system identification, Turing Learning does not require predefined metrics to quantify the difference between the system and its models. We present two case studies with swarms of simulated robots and prove that the underlying behaviors cannot be inferred by a metric-based system identification method. By contrast, Turing Learning infers the behaviors with high accuracy. It also produces a useful by-product—the classifiers—that can be used to detect abnormal behavior in the swarm. Moreover, we show that Turing Learning also successfully infers the behavior of physical robot swarms. The results show that collective behaviors can be directly inferred from motion trajectories of individuals in the swarm, which may have significant implications for the study of animal collectives. Furthermore, Turing Learning could prove useful whenever a behavior is not easily characterizable using metrics, making it suitable for a wide range of applications.  相似文献   
886.
887.
888.
889.
890.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号