首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8988篇
  免费   774篇
  国内免费   2篇
  9764篇
  2024年   12篇
  2023年   41篇
  2022年   109篇
  2021年   230篇
  2020年   113篇
  2019年   154篇
  2018年   189篇
  2017年   161篇
  2016年   293篇
  2015年   469篇
  2014年   513篇
  2013年   551篇
  2012年   780篇
  2011年   740篇
  2010年   461篇
  2009年   424篇
  2008年   569篇
  2007年   571篇
  2006年   537篇
  2005年   536篇
  2004年   493篇
  2003年   459篇
  2002年   430篇
  2001年   73篇
  2000年   52篇
  1999年   105篇
  1998年   111篇
  1997年   72篇
  1996年   56篇
  1995年   59篇
  1994年   47篇
  1993年   51篇
  1992年   40篇
  1991年   31篇
  1990年   39篇
  1989年   28篇
  1988年   28篇
  1987年   19篇
  1986年   17篇
  1985年   17篇
  1984年   19篇
  1983年   13篇
  1982年   11篇
  1981年   12篇
  1980年   3篇
  1979年   6篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1974年   4篇
排序方式: 共有9764条查询结果,搜索用时 0 毫秒
911.
Resprouting of Echinacea angustifolia Augments Sustainability of Wild Medicinal Plant Populations. Overharvest of wild Echinacea species root has been a significant concern to the herbal industry. Harvesters of wild Echinacea angustifolia showed us that even after harvesting the top 15 to 20 cm of root, some plants resprout. We marked locations of harvested plants at sites in Kansas and Montana and reexamined them two years later to see if they resprouted from remaining root reserves. Approximately 50% of the roots resprouted at both Kansas and Montana sampling sites, despite droughty weather conditions in Montana. The length of root harvested significantly affected the ability of the plant to resprout. Those plants that were more shallowly harvested and had less root length removed were more likely to resprout. These data indicate that echinacea stands can recover over time from intensive harvest if periods of nonharvest occur. Our echinacea harvest study emphasizes that the entire biology of medicinal plants must be considered when evaluating their conservation status.  相似文献   
912.
Escherichia coli DEAD-box protein A (DbpA) is an ATP-dependent RNA helicase with specificity for 23S ribosomal RNA. Although DbpA has been extensively characterized biochemically, its biological function remains unknown. Previous work has shown that a DbpA deletion strain is viable with little or no effect on growth rate. In attempt to elucidate a phenotype for DbpA, point mutations were made at eleven conserved residues in the ATPase active site, which have exhibited dominant-negative phenotypes in other DExD/H proteins. Biochemical analysis of these DbpA mutants shows the expected decrease in RNA-dependent ATPase activity and helix unwinding activity. Only the least biochemically active mutation, R331A, produces small colony phenotype and a reduced growth rate. This dominant slow growth mutant will be valuable to determine the cellular function of DbpA.  相似文献   
913.
To persist in the presence of an active immune system, viruses encode proteins that decrease expression of major histocompatibility complex class I molecules by using a variety of mechanisms. For example, murine gamma-2 herpesvirus 68 expresses the K3 protein, which causes the rapid turnover of nascent class I molecules. In this report we show that certain mouse class I alleles are more susceptible than others to K3-mediated down regulation. Prior to their rapid degradation, class I molecules in K3-expressing cells exhibit impaired assembly with beta(2)-microglobulin. Furthermore, K3 is detected predominantly in association with class I molecules lacking assembly with high-affinity peptides, including class I molecules associated with the peptide loading complex TAP/tapasin/calreticulin. The detection of K3 with class I assembly intermediates raises the possibility that molecular chaperones involved in class I assembly are involved in K3-mediated class I regulation.  相似文献   
914.
Humanized mouse models are useful tools to explore the functional and regulatory differences between human and murine orthologous genes. We have combined a bioinformatics approach and an in vivo approach to assess the functional and regulatory differences between the human and mouse ABCA1 genes. Computational analysis identified significant differences in potential regulatory sites between the human and mouse genes. The effect of these differences was assessed in vivo, using a bacterial artificial chromosome transgenic humanized ABCA1 mouse model that expresses the human gene in the absence of mouse ABCA1. Humanized mice expressed human ABCA1 protein at levels similar to wild-type mice and fully compensated for cholesterol efflux activity and lipid levels seen in ABCA1-deficient mice. Liver X receptor agonist administration resulted in significant increases in HDL values associated with parallel increases in the hepatic ABCA1 protein and mRNA levels in the humanized ABCA1 mice, as seen in the wild-type animals. Our studies indicate that despite differences in potential regulatory regions, the human ABCA1 gene is able to functionally fully compensate for the mouse gene. Our humanized ABCA1 mice can serve as a useful model system for functional analysis of the human ABCA1 gene in vivo and can be used for the generation of potential new therapeutics that target HDL metabolism.  相似文献   
915.
Genetic imprinting: conflict at the Callipyge locus   总被引:4,自引:0,他引:4  
  相似文献   
916.
C57BL/6J (B6) inbred mice are well known to drink large amounts of alcohol (ethanol) voluntarily and to have only modest ethanol-induced withdrawal under fixed dose conditions. In contrast, DBA/2J (D2) mice are ``teetotallers' and exhibit severe ethanol withdrawal. Speculation that an inverse genetic relationship existed between these two traits was substantiated by meta-analysis of existing data collected in multiple genetic models, including large panels of standard and recombinant inbred strains, their crosses, and selectively bred mouse lines. Despite methodological differences among laboratories in measurement of both preference drinking and withdrawal, a nearly universal finding was that genotypes consuming large amounts of 10% ethanol (calculated as g/kg/day) during two-bottle choice preference drinking were genetically predisposed to low withdrawal scores in independent studies after either acute or chronic ethanol treatment. Conversely, low-drinking genotypes had higher withdrawal severity scores. The genetic relationship appears to be strongest in populations derived from B6 and D2, where data from more genotypes (BXD RIs, B6D2F2s, BXD RI F1s, and B6D2F2-derived selectively bred lines) were available for analysis. Gene mapping studies in these populations identified four chromosome regions [on Chromosomes (Chrs) 1, 2, 4, and 15] where genes might potentially influence both traits. Among genotypes with greater genetic diversity (for example, a panel of standard inbred strains or selectively bred lines), the relationship was less pronounced. Thus, reduced susceptibility to the development of high alcohol use may be supported by increased genetic susceptibility to ethanol withdrawal symptoms. Received: 15 September 1998 / Accepted: 8 October 1998  相似文献   
917.
Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self‐assembly that aligns lysine residues for crosslinking. As a result, both the full‐length monomer as well as elastin‐like polypeptides (ELPs) can be made into biomaterials whose properties resemble those of native polymeric elastin. Using both full‐length human tropoelastin (hTE) as well as ELPs, we and others have previously reported on the influence of sequence and domain arrangements on self‐assembly properties. Here we investigate the role of domain sequence and organization on the tensile mechanical properties of crosslinked biomaterials fabricated from ELP variants. In general, substitutions in ELPs involving similiar domain types (hydrophobic or crosslinking) had little effect on mechanical properties. However, modifications altering either the structure or the characteristic sequence style of these domains had significant effects on such properties. In addition, using a series of deletion and replacement constructs for full‐length hTE, we provide new insights into the role of conserved domains of tropoelastin in determining mechanical properties. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 392–407, 2013.  相似文献   
918.
919.
Nephroblastoma overexpressed (Nov), a member of the Cyr 61, connective tissue growth factor, Nov (CCN) family of proteins, is expressed by osteoblasts, but its function in cells of the osteoblastic lineage is not known. We investigated the effects of Nov overexpression by transducing murine ST-2 stromal and MC3T3 osteoblastic cells with a retroviral vector where Nov is under the control of the cytomegalovirus promoter. We also examined the skeletal phenotype of transgenic mice expressing Nov under the control of the human osteocalcin promoter. Overexpression of Nov in ST-2 cells inhibited the appearance of mineralized nodules and decreased alkaline phosphatase activity and osteocalcin mRNA levels. Nov overexpression inhibited the effect of bone morphogenetic protein (BMP)-2 on the phosphorylation of Smad 1/5/8; on the transactivation of 12xSBE-Oc-pGL3, a BMP/Smad signaling reporter construct, and of Wnt 3 on cytoplasmic beta-catenin levels; and on the transactivation of the Wnt/beta-catenin signaling reporter construct 16xTCF-Luc. Nov overexpression did not activate Notch or transforming growth factor beta signaling. Glutathione S-transferase pulldown assays demonstrated direct Nov-BMP interactions. Nov transgenic mice exhibited osteopenia. In conclusion, Nov binds BMP-2 and antagonizes BMP-2 and Wnt activity, and its overexpression inhibits osteoblastogenesis and causes osteopenia.  相似文献   
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号