首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2179篇
  免费   146篇
  2325篇
  2023年   7篇
  2022年   21篇
  2021年   41篇
  2020年   27篇
  2019年   34篇
  2018年   54篇
  2017年   27篇
  2016年   68篇
  2015年   98篇
  2014年   99篇
  2013年   167篇
  2012年   184篇
  2011年   170篇
  2010年   97篇
  2009年   92篇
  2008年   139篇
  2007年   126篇
  2006年   124篇
  2005年   102篇
  2004年   114篇
  2003年   101篇
  2002年   90篇
  2001年   22篇
  2000年   14篇
  1999年   13篇
  1998年   25篇
  1997年   13篇
  1996年   20篇
  1995年   13篇
  1994年   19篇
  1993年   23篇
  1992年   20篇
  1991年   17篇
  1990年   23篇
  1989年   7篇
  1988年   11篇
  1987年   7篇
  1986年   4篇
  1985年   19篇
  1984年   7篇
  1983年   7篇
  1982年   7篇
  1981年   11篇
  1980年   4篇
  1979年   10篇
  1978年   7篇
  1975年   3篇
  1974年   4篇
  1971年   2篇
  1968年   2篇
排序方式: 共有2325条查询结果,搜索用时 15 毫秒
11.
The role of the integral inner membrane subunit e in self-association of F0F1ATP synthase from bovine heart mitochondria was analyzed by in situ limited proteolysis, blue native PAGE/iterative SDS-PAGE, and LC-MS/MS. Selective degradation of subunit e, without disrupting membrane integrity or ATPase capacity, altered the oligomeric distribution of F0F1ATP synthase, by eliminating oligomers and reducing dimers in favor of monomers. The stoichiometry of subunit e was determined by a quantitative MS-based proteomics approach, using synthetic isotope-labelled reference peptides IAQL*EEVK, VYGVGSL*ALYEK, and ELAEAQEDTIL*K to quantify the b, γ and e subunits, respectively. Accuracy of the method was demonstrated by confirming the 1:1 stoichiometry of subunits γ and b. Altogether, the results indicate that the integrity of a unique copy of subunit e is essential for self-association of mammalian F0F1ATP synthase. Elena Bisetto and Paola Picotti contributed equally to this work.  相似文献   
12.
Land-use and land-cover transitions can affect biodiversity and ecosystem functioning in a myriad of ways, including how energy is transferred within food-webs. Size spectra (i.e. relationships between body size and biomass or abundance) provide a means to assess how food-webs respond to environmental stressors by depicting how energy is transferred from small to larger organisms. Here, we investigated changes in the size spectrum of aquatic macroinvertebrates along a broad land-use intensification gradient (from Atlantic Forest to mechanized agriculture) in 30 Brazilian streams. We expected to find a steeper size spectrum slope and lower total biomass in more disturbed streams due to higher energetic expenditure in physiologically stressful conditions, which has a disproportionate impact on large individuals. As expected, we found that more disturbed streams had fewer small organisms than pristine forest streams, but, surprisingly, they had shallower size spectrum slopes, which indicates that energy might be transferred more efficiently in disturbed streams. Disturbed streams were also less taxonomically diverse, suggesting that the potentially higher energy transfer in these webs might be channelled via a few efficient trophic links. However, because total biomass was higher in pristine streams, these sites still supported a greater number of larger organisms and longer food chains (i.e. larger size range). Our results indicate that land-use intensification decreases ecosystem stability and enhances vulnerability to population extinctions by reducing the possible energetic pathways while enhancing efficiency between the remaining food-web linkages. Our study represents a step forward in understanding how land-use intensification affects trophic interactions and ecosystem functioning in aquatic systems.  相似文献   
13.
Spermatids are haploid differentiating cells that, in the meantime they differentiate, translocate along the seminiferous epithelium towards the tubule lumen to be just released as spermatozoa. The success of such a migration depends on dynamic of spermatid–Sertoli cell contacts, the molecular nature of which has not been well defined yet. It was demonstrated that the vascular endothelial cadherin (VEC) is expressed transitorily in the mouse seminiferous epithelium. Here, we evaluated the pattern of VEC expression by immunohistochemistry first in seminiferous tubules at different stages of the epithelial cycle when only unique types of germ cell associations are present. Changes in the pattern of VEC localization according to the step of spermatid differentiation were analysed in detail using testis fragments and spontaneously released germ cells. Utilizing the first wave of spermatogenesis as an in vivo model to have at disposal spermatids at progressive steps of differentiation, we checked for level of looser VEC association with the membrane by performing protein solubilisation under mild detergent conditions and assays through VEC-immunoblotting. Being changes in VEC solubilisation paralleled in changes in phosphotyrosine (pY) content, we evaluated if spermatid VEC undergoes Y658 phosphorylation and if this correlates with VEC solubilisation and spermatid progression in differentiation. Altogether, our study shows a temporally restricted pattern of VEC expression that culminates with the presence of round spermatids to progressively decrease starting from spermatid elongation. Conversely, pY658-VEC signs elongating spermatids; its intracellular polarized compartmentalization suggests a possible involvement of pY658-VEC in the acquisition of spermatid cell polarity.  相似文献   
14.
Abstract. Plant defense theories suggest that chemical or structural defences should be maximized when and where browsing is most likely to occur. We tested this hypothesis on four evergreen woody species growing in a Mediterranean area with a high density of ungulates. In this system, levels of browsing are more intense in the winter (due to the lack of annual plants) and young foliage is often preferred. Therefore we predicted that the chemical defences of these species, namely their phenolic content, would vary with leaf age, season and damage intensity. In addition, we tested whether ungulates preferentially selected species containing lower phenolic levels, and also whether browsing induced either chemical or morphological changes in damaged plants. Phenolic levels varied greatly between plant species; ungulates browsed preferentially on the species with the lowest phenolic levels. No difference in phenolic content was found between browsed and unbrowsed trees. Morphological changes in heavily browsed trees included an increase in shoot and leaf density and a net decrease in leaf size. We suggest that for Mediterranean plants, which have evolved under high browsing pressure from large mammals, the production of small leaves and dense shoots in response to browsing might decrease ungulate foraging efficiency and hence reduce the rate of further damage as effectively as high levels of chemical defence.  相似文献   
15.
Protein and peptide arrays: recent trends and new directions   总被引:3,自引:0,他引:3  
Microarrays of proteins and peptides make it possible the screening of thousands of binding events in a parallel and high throughput fashion; therefore they are emerging as a powerful tool for proteomics and clinical assays. The complex nature of Proteome, the wide dynamic range of protein concentration in real samples and the critical role of immobilized protein orientation must be taken into account to maximize the utility of protein microarrays. Immobilization strategy and designing of an ideal local chemical environment on the solid surface are both essential for the success of a protein microarray experiment. This review article will focus on protein and peptide arrays highlighting their technical challenges and presenting new directions by means of a set of selected recent applications.  相似文献   
16.
D6 scavenges inflammatory chemokines and is essential for the regulation of inflammatory and immune responses. Mechanisms explaining the cellular basis for D6 function have been based on D6 expression by lymphatic endothelial cells. In this study, we demonstrate that functional D6 is also expressed by murine and human hemopoietic cells and that this expression can be regulated by pro- and anti-inflammatory agents. D6 expression was highest in B cells and dendritic cells (DCs). In myeloid cells, LPS down-regulated expression, while TGF-beta up-regulated expression. Activation of T cells with anti-CD3 and soluble CD28 up-regulated mRNA expression 20-fold, while maturation of human macrophage and megakaryocyte precursors also up-regulated D6 expression. Competition assays demonstrated that chemokine uptake was D6 dependent in human leukocytes, whereas mouse D6-null cells failed to uptake and clear inflammatory chemokines. Furthermore, we present evidence indicating that D6 expression is GATA1 dependent, thus explaining D6 expression in myeloid progenitor cells, mast cells, megakaryocytes, and DCs. We propose a model for D6 function in which leukocytes, within inflamed sites, activate D6 expression and thus trigger resolution of inflammatory responses. Our data on D6 expression by circulating DCs and B cells also suggest alternative roles for D6, perhaps in the coordination of innate and adaptive immune responses. These data therefore alter our models of in vivo D6 function and suggest possible discrete, and novel, roles for D6 on lymphatic endothelial cells and leukocytes.  相似文献   
17.
Summary The Carboniferous, particularly during the Serpukhovian and Bashkirian time, was a period of scarce shallow-water calcimicrobial-microbialite reef growth. Organic frameworks developed on high-rising platforms are, however, recorded in the Precaspian Basin subsurface, Kazakhstan, Russia, Japan and Spain and represent uncommon occurrences within the general trend of low accumulation rates and scarcity of shallow-water reefs. Sierra del Cuera (Cantabrian Mountains, N Spain) is a well-exposed high-rising carbonate platform of Late Carboniferous (Bashkirian-Moscovian) age with a microbial boundstone-dominated slope dipping from 20° up to 45°. Kilometer-scale continuous exposures allow the detailed documentation of slope geometry and lithofacies spatial distribution. This study aims to develop a depositional model of steep-margined Late Paleozoic platforms built by microbial carbonates and to contribute to the understanding of the controlling factors on lithofacies characteristics, stacking patterns, accumulation rates and evolution of the depositional architecture of systems, which differ from light-dependent coralgal platform margins. From the platform break to depths of nearly 300 m, the slope is dominated by massive cement-rich boundstone, which accumulated through the biologically induced precipitation of micrite. Boundstone facies (type A) with peloidal carbonate mud, fenestellid and fistuliporid bryozoans, sponge-like molds and primary cavities filled by radiaxial fibrous cement occurs all over the slope but dominates the deeper settings. Type B boundstone consists of globose centimeter-scale laminated accretionary structures, which commonly host botryoidal cement in growth cavities. The laminae nucleate around fenestellid bryozoans, sponges, Renalcis and Girvanella-like filaments. Type B boundstone typically occurs at depths between 20–150 m to locally more than 300 m and forms the bulk of the Bashkirian prograding slope. The uppermost slope boundstone (type C; between 0 and 20–100 m depth) includes peloidal micrite, radiaxial fibrous cement, bryozoans, sponge molds, Donezella, Renalcis, Girvanella, Ortonella, calcareous algae and calcitornellid foraminifers. From depths of 80–200 m to 450 m, 1–30 m thick lenses of crinoidal packstone, spiculitic wackestone, and bryozoan biocementstone with red-stained micrite matrix are episodically intercalated with boundstone and breccias. These layers increase in number from the uppermost Bashkirian to the Moscovian in parallel with the change from a rapidly prograding to an aggrading architecture. The red-stained strata share comparable features with Lower Carboniferous deeper-water mud-mound facies and were deposited during relative rises of sea level and pauses in boundstone production. Rapid relative sea-level rises might have been associated with changes in oceanographic conditions not favourable for thecalcimicrobial boundstone growth, such as upwelling of colder, nutrient-rich waters lifting the thermocline to depths of 80–200 m. Downslope of 150–300 m, boundstones interfinger with layers of matrix-free breccias, lenses of matrix-rich breccias, platform- and slope-derived grainstone and crinoidal packstone. Clast-supported breccias bound by radiaxial cement are produced by rock falls and avalanches coeval to boundstone growth. Matrix-rich breccias are debris flow deposits triggered by the accumulation of red-stained layers. Debris flows develop following the relative sea-level rises, which favour the deposition of micrite-rich lithofacies on the slope rather than being related to relative sea-level falls and subaerial exposures. The steep slope angles are the result of in situ growth and rapid stabilization by marine cement in the uppermost part, passing into a detrital talus, which rests at the angle of repose of noncohesive material. In the Moscovian, the aggradational architecture and steeper clinoforms are the result of increased accommodation space due to tectonic subsidence and due to a reduction of slope accumulation rates (from 240±45−605±35 m/My to 130±5 m/My). The increasing number of red-stained layers and the decrease of boundstone productivity are attributed to environmental changes in the adjacent basin, in particular during relative rises of sea level and to possible cooling due to icehouse conditions. The geometry of the depositional system appears to be controlled by boundstone growth rates. During the Bashkirian, the boundstone growth potential is at least 10 times greater than average values for ancient carbonate systems. The slope progradation rates (nearly 400–1000 m/My) are similar to the highest values deduced for the Holocene Bahamian prograding platform margin. The fundamental differences with modern systems are that progradation of the microbial-boundstone dominated steep slope is primarily controlled by boundstone growth rates rather than by highstand shedding from the platform top and that boundstone growth is largely independent from light and controlled by the physicochemical characteristics of seawater.  相似文献   
18.
Staphylococcus epidermidis, a human commensal, is an important opportunistic, biofilm-forming pathogen and the main cause of late onset sepsis in preterm infants, worldwide. In this study we describe the characteristics of S. epidermidis strains causing late onset (>72 h) bloodstream infection in preterm infants and skin isolates from healthy newborns. Attachment and biofilm formation capability were analyzed in microtiter plates and with transmission electron microscopy (TEM). Clonal relationship among strains was studied with pulsed-field gel electrophoresis. Antimicrobial susceptibility testing was performed, as well as the detection of biofilm-associated genes and of the invasiveness marker IS256 with polymerase chain reaction. Blood and skin isolates had similar attachment and biofilm-forming capabilities and biofilm formation was not related to the presence of specific genes. Filament-like membrane structures were seen by TEM early in the attachment close to the device surface, both in blood and skin strains. Nine of the ten blood isolates contained the IS256 and were also resistant to methicillin and gentamicin in contrast to skin strains. S. epidermidis strains causing bloodstream infection in preterm infants exhibit higher antibiotic resistance and are provided with an invasive genetic equipment compared to skin commensal strains. Adhesion capability to a device surface seems to involve bacterial membrane filaments.  相似文献   
19.
20.
MicroRNA145 (miR145), a tumor suppressor miR, has been reported to inhibit growth of human cancer cells, to induce differentiation and to cause apoptosis, all conditions that result in growth arrest. In order to clarify the functional effects of miR145, we have investigated its expression in diverse conditions and different cell lines. Our results show that miR145 levels definitely increase in differentiating cells and also in growth-arrested cells, even in the absence of differentiation. Increased expression during differentiation sometimes occurs as a late event, suggesting that miR145 could be required either early or late during the differentiation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号