全文获取类型
收费全文 | 3173篇 |
免费 | 217篇 |
专业分类
3390篇 |
出版年
2024年 | 3篇 |
2023年 | 16篇 |
2022年 | 42篇 |
2021年 | 66篇 |
2020年 | 46篇 |
2019年 | 60篇 |
2018年 | 97篇 |
2017年 | 62篇 |
2016年 | 118篇 |
2015年 | 164篇 |
2014年 | 180篇 |
2013年 | 238篇 |
2012年 | 299篇 |
2011年 | 252篇 |
2010年 | 149篇 |
2009年 | 136篇 |
2008年 | 214篇 |
2007年 | 174篇 |
2006年 | 168篇 |
2005年 | 139篇 |
2004年 | 159篇 |
2003年 | 135篇 |
2002年 | 117篇 |
2001年 | 25篇 |
2000年 | 16篇 |
1999年 | 21篇 |
1998年 | 31篇 |
1997年 | 13篇 |
1996年 | 20篇 |
1995年 | 14篇 |
1994年 | 20篇 |
1993年 | 26篇 |
1992年 | 17篇 |
1991年 | 16篇 |
1990年 | 23篇 |
1989年 | 7篇 |
1988年 | 11篇 |
1987年 | 6篇 |
1986年 | 4篇 |
1985年 | 14篇 |
1984年 | 6篇 |
1983年 | 7篇 |
1982年 | 7篇 |
1981年 | 11篇 |
1980年 | 4篇 |
1979年 | 10篇 |
1978年 | 7篇 |
1976年 | 3篇 |
1975年 | 3篇 |
1974年 | 5篇 |
排序方式: 共有3390条查询结果,搜索用时 15 毫秒
51.
Muscella A Greco S Elia MG Storelli C Marsigliante S 《Journal of cellular physiology》2004,200(3):428-439
We have previously shown that HeLa cells express P2Y2 and P2Y6 receptors endogenously and determined the pathways by which the P2Y2 controls proliferation and Na+/K+ATPase activity. Our objective in this study was to investigate the hypothesis that P2Y6 also controls proliferation and Na+/K+ATPase activity; the pathways used in these actions were partially characterised. We found that P2Y6 activation controlled cell proliferation but not the activity of the Na+/K+ATPase. UDP activation of P2Y6 provoked: (a) an increase in free cytosolic calcium; (b) the activation of protein kinase C-alpha, -beta, -delta, -epsilon, and -zeta but not of PKC-iota and -eta; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2); (d) the expression of c-Fos protein. The P2Y6 induced cell proliferation was blocked by the mitogen-activated protein kinase kinase (MAPKK) inhibitor PD098059, thereby indicating that the ERK pathway mediates the mitogenic signalling of P2Y6. PKC and phosphoinositide 3-kinase (PI3K) inhibitors were tested at two different time points of ERK1/2 phosphorylation (10 and 60 min). The results suggest that novel PKCs and PI3K initiate the response but both conventional and atypical PKCs are required for the maintenance of the UDP-induced phosphorylation of ERK1/2. The induction of c-Fos was greatly diminished by conventional or atypical PKC-zeta inhibition, suggesting that it may be due to PKC-alpha/beta and -zeta activity. These observations demonstrate that UDP acts as a proliferative agent in HeLa cells activating multiple signalling pathways involving conventional, novel, and atypical PKCs, PI3K, and ERK. Of these pathways, conventional and atypical PKCs appear responsible for the induction of c-Fos, while ERK is responsible for cell proliferation and depends upon both novel and atypical PKCs and PI3K activities. 相似文献
52.
Cristina Miazzi Paola Ferraro Giovanna Pontarin Chiara Rampazzo Peter Reichard Vera Bianchi 《The Journal of biological chemistry》2014,289(26):18339-18346
The deoxyribonucleotide triphosphohydrolase SAMHD1 restricts lentiviral infection by depleting the dNTPs required for viral DNA synthesis. In cultured human fibroblasts SAMHD1 is expressed maximally during quiescence preventing accumulation of dNTPs outside S phase. siRNA silencing of SAMHD1 increases dNTP pools, stops cycling human cells in G1, and blocks DNA replication. Surprisingly, knock-out of the mouse gene does not affect the well being of the animals. dNTPs are both substrates and allosteric effectors for SAMHD1. In the crystal structure each subunit of the homotetrameric protein contains one substrate-binding site and two nonidentical effector-binding sites, site 1 binding dGTP, site 2 dGTP or dATP. Here we compare allosteric properties of pure recombinant human and mouse SAMHD1. Both enzymes are activated 3–4-fold by allosteric effectors. We propose that in quiescent cells where SAMHD1 is maximally expressed GTP binds to site 1 with very high affinity, stabilizing site 2 of the tetrameric structure. Any canonical dNTP can bind to site 2 and activate SAMHD1, but in cells only dATP or dTTP are present at sufficient concentrations. The apparent Km for dATP at site 2 is ∼10 μm for mouse and 1 μm for human SAMHD1, for dTTP the corresponding values are 50 and 2 μm. Tetrameric SAMHD1 is activated for the hydrolysis of any dNTP only after binding of a dNTP to site 2. The lower Km constants for human SAMHD1 induce activation at lower cellular concentrations of dNTPs thereby limiting the size of dNTP pools more efficiently in quiescent human cells. 相似文献
53.
Colognesi I Pasquali V Foà A Renzi P Bernardi F Bertolucci C Pinotti M 《Chronobiology international》2007,24(2):305-313
It was recently reported that the circadian clock machinery controls plasma levels of factor (F) VII, the serine protease triggering blood coagulation. Here, by exploiting the mouse model, this study showed that variations of photoperiod (i.e., winter or summer conditions or simulated chronic jetlag conditions) have a strong impact on plasma FVII activity levels. Under conditions mimicking summer or winter photoperiods, FVII activity showed a clear 24 h rhythmicity. Interestingly, mean daily FVII activity levels were significantly reduced in mice exposed to summer photoperiods. Behavioral activity rhythms under both photoperiods were synchronized to LD cycles, and the amount of activity per 24 h was comparable. The authors also investigated the influence of chronic jetlag (CJL) on the FVII activity rhythms, which can be easily mimicked in mice through continuous abrupt shifts in the lighting schedule. The exposure of mice to simulated CJL of either consecutive westward or consecutive westward and eastward flights for 15 days did not abolish the behavioral activity rhythms but was associated with a period significantly different from 24 h. Intriguingly, both types of CJL exerted a strong influence on FVII activity rhythms, which were virtually suppressed. Moreover, the mean daily FVII activity was significantly lower in the CJL than in the winter photoperiod condition. Taken together, these findings in mice provide novel insights into the modulation of FVII activity levels, which might have implications for human pathophysiology. 相似文献
54.
Ilaria Guerini Nicola J Geisler Hengyao Niu Mareike Herzog Israel Salguero Bernardo Ochoa‐Montaño Emmanuelle Viré Patrick Sung David J Adams Thomas M Keane Stephen P Jackson 《The EMBO journal》2015,34(11):1509-1522
DNA double-strand break (DSB) repair by homologous recombination (HR) requires 3′ single-stranded DNA (ssDNA) generation by 5′ DNA-end resection. During meiosis, yeast Sae2 cooperates with the nuclease Mre11 to remove covalently bound Spo11 from DSB termini, allowing resection and HR to ensue. Mitotic roles of Sae2 and Mre11 nuclease have remained enigmatic, however, since cells lacking these display modest resection defects but marked DNA damage hypersensitivities. By combining classic genetic suppressor screening with high-throughput DNA sequencing, we identify Mre11 mutations that strongly suppress DNA damage sensitivities of sae2Δ cells. By assessing the impacts of these mutations at the cellular, biochemical and structural levels, we propose that, in addition to promoting resection, a crucial role for Sae2 and Mre11 nuclease activity in mitotic DSB repair is to facilitate the removal of Mre11 from ssDNA associated with DSB ends. Thus, without Sae2 or Mre11 nuclease activity, Mre11 bound to partly processed DSBs impairs strand invasion and HR. 相似文献
55.
Evaluation of the inhibitory effects of human serum components on bactericidal activity of human beta defensin 3 总被引:2,自引:1,他引:2
Maisetta G Di Luca M Esin S Florio W Brancatisano FL Bottai D Campa M Batoni G 《Peptides》2008,29(1):1-6
Naturally occurring cationic antimicrobial peptides (CAPs) are an essential component of the innate immune system of multicellular organisms. At concentrations generally higher than those found in vivo, most CAPs exhibit strong antibacterial properties in vitro, but their activity may be inhibited by body fluids, a fact that could limit their future use as antimicrobial and/or immunomodulatory agents. In the present study, we evaluated the effects of human serum components on bactericidal activity of the human beta-defensin 3 (hBD-3), a CAP considered particularly promising for future therapeutic employment. Human serum diluted to 20% strongly inhibited the bactericidal activity of the peptide against both the Gram-positive species Staphylococcus aureus and the Gram-negative species Acinetobacter baumannii. Such activity was not restored in serum devoid of salts (dialyzed), pre-treated with protease inhibitors, or subjected to both of these treatments. The addition of physiological concentrations of NaCl, CaCl2, and human albumin in the bactericidal assay abolished bactericidal activity of hBD-3 against S. aureus, while it only partially inhibited the activity of the peptide against A. baumannii. Although a proteolytic activity of serum on hBD-3 was demonstrated at the protein level by Western blot, addition of physiological concentrations of trypsin to the bactericidal assay only partially affected the antibacterial properties of the peptide. Altogether, these results demonstrate a major role of mono-divalent cations and serum proteins on inhibition of hBD-3 antibacterial properties and indicate a relative lack in sensitivity of the bactericidal activity of this peptide to trypsin and trypsin-like proteases. 相似文献
56.
57.
Evolution of collagen IV genes from a 54-base pair exon: A role for introns in gene evolution 总被引:1,自引:0,他引:1
Giovanna Butticè Paul Kaytes Jeanine D'Armiento Gabriel Vogeli Markku Kurkinen 《Journal of molecular evolution》1990,30(6):479-488
The exon structure of the collagen IV gene provides a striking example for collagen evolution and the role of introns in gene evolution. Collagen IV, a major component of basement membranes, differs from the fibrillar collagens in that it contains numerous interruptions in the triple helical Gly-X-Y repeat domain. We have characterized all 47 exons in the mouse alpha 2(IV) collagen gene and find two 36-, two 45-, and one 54-bp exons as well as one 99- and three 108-bp exons encoding the Gly-X-Y repeat sequence. All these exons sizes are also found in the fibrillar collagen genes. Strikingly, of the 24 interruption sequences present in the alpha 2-chain of mouse collagen IV, 11 are encoded at the exon/intron borders of the gene, part of one interruption sequence is encoded by an exon of its own, and the remaining interruptions are encoded within the body of exons. In such "fusion exons" the Gly-X-Y encoding domain is also derived from 36-, 45-, or 54-bp sequence elements. These data support the idea that collagen IV genes evolved from a primordial 54-bp coding unit. We furthermore interpret these data to suggest that the interruption sequences in collagen IV may have evolved from introns, presumably by inactivation of splice site signals, following which intronic sequences could have been recruited into exons. We speculated that this mechanism could provide a role for introns in gene evolution in general. 相似文献
58.
59.
Irene Faravelli Megi Meneri Domenica Saccomanno Daniele Velardo Elena Abati Delia Gagliardi Valeria Parente Lucia Petrozzi Dario Ronchi Nino Stocchetti Edoardo Calderini Grazia D’Angelo Giovanna Chidini Edi Prandi Giulia Ricci Gabriele Siciliano Nereo Bresolin Giacomo Pietro Comi Stefania Corti Francesca Magri Alessandra Govoni 《Journal of cellular and molecular medicine》2020,24(5):3034-3039
The antisense oligonucleotide Nusinersen has been recently licensed to treat spinal muscular atrophy (SMA). Since SMA type 3 is characterized by variable phenotype and milder progression, biomarkers of early treatment response are urgently needed. We investigated the cerebrospinal fluid (CSF) concentration of neurofilaments in SMA type 3 patients treated with Nusinersen as a potential biomarker of treatment efficacy. The concentration of phosphorylated neurofilaments heavy chain (pNfH) and light chain (NfL) in the CSF of SMA type 3 patients was evaluated before and after six months since the first Nusinersen administration, performed with commercially available enzyme-linked immunosorbent assay (ELISA) kits. Clinical evaluation of SMA patients was performed with standardized motor function scales. Baseline neurofilament levels in patients were comparable to controls, but significantly decreased after six months of treatment, while motor functions were only marginally ameliorated. No significant correlation was observed between the change in motor functions and that of neurofilaments over time. The reduction of neurofilament levels suggests a possible early biochemical effect of treatment on axonal degeneration, which may precede changes in motor performance. Our study mandates further investigations to assess neurofilaments as a marker of treatment response. 相似文献
60.
Boucherit N Barry AO Mottola G Trouplin V Capo C Mege JL Ghigo E 《FEMS immunology and medical microbiology》2012,64(1):101-103
Q fever is a disease caused by Coxiella burnetii, an obligate intracellular bacterium. Acute Q fever is characterized by efficient immune response, whereas chronic Q fever is characterized by dysregulated immune response as demonstrated by the lack of granulomas, the failure of C. burnetii to induce lymphoproliferation, and interferon-γ production. The mitogen-activated protein kinase (MAPK) signaling pathway plays crucial roles in innate immune responses and control of bacterial infections. However, its role in Q fever has not been addressed. First, we investigated the activation of MAPKs p38, c-jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) 1/2 in murine macrophages stimulated with C. burnetii. Coxiella burnetii NM phase I (virulent) and NM phase II (avirulent) induced the activation of JNK and ERK1/2. Avirulent C. burnetii activate p38, whereas C. burnetii did not induce the phosphorylation of p38. Second, the level of p38 activation was studied in Q fever patients. We found that p38 was activated in monocyte-derived macrophages from healthy donors and patients with acute Q fever in response to a potent agonist such as lipopolysaccharide. Interestingly, p38 was not activated in patients with active chronic Q fever and was activated in patients with cured chronic Q fever. These results suggest that the determination of p38 activation may serve as a tool for measuring Q fever activity. 相似文献