首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2120篇
  免费   135篇
  2255篇
  2023年   7篇
  2022年   21篇
  2021年   41篇
  2020年   27篇
  2019年   34篇
  2018年   54篇
  2017年   27篇
  2016年   66篇
  2015年   97篇
  2014年   95篇
  2013年   164篇
  2012年   182篇
  2011年   164篇
  2010年   93篇
  2009年   90篇
  2008年   137篇
  2007年   124篇
  2006年   122篇
  2005年   98篇
  2004年   110篇
  2003年   97篇
  2002年   87篇
  2001年   22篇
  2000年   14篇
  1999年   13篇
  1998年   25篇
  1997年   13篇
  1996年   20篇
  1995年   13篇
  1994年   18篇
  1993年   23篇
  1992年   14篇
  1991年   13篇
  1990年   20篇
  1989年   4篇
  1988年   10篇
  1987年   5篇
  1986年   4篇
  1985年   15篇
  1984年   6篇
  1983年   7篇
  1982年   7篇
  1981年   11篇
  1980年   4篇
  1979年   10篇
  1978年   7篇
  1975年   3篇
  1974年   4篇
  1971年   2篇
  1968年   2篇
排序方式: 共有2255条查询结果,搜索用时 0 毫秒
101.
Q fever is a disease caused by Coxiella burnetii, an obligate intracellular bacterium. Acute Q fever is characterized by efficient immune response, whereas chronic Q fever is characterized by dysregulated immune response as demonstrated by the lack of granulomas, the failure of C. burnetii to induce lymphoproliferation, and interferon-γ production. The mitogen-activated protein kinase (MAPK) signaling pathway plays crucial roles in innate immune responses and control of bacterial infections. However, its role in Q fever has not been addressed. First, we investigated the activation of MAPKs p38, c-jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) 1/2 in murine macrophages stimulated with C. burnetii. Coxiella burnetii NM phase I (virulent) and NM phase II (avirulent) induced the activation of JNK and ERK1/2. Avirulent C. burnetii activate p38, whereas C. burnetii did not induce the phosphorylation of p38. Second, the level of p38 activation was studied in Q fever patients. We found that p38 was activated in monocyte-derived macrophages from healthy donors and patients with acute Q fever in response to a potent agonist such as lipopolysaccharide. Interestingly, p38 was not activated in patients with active chronic Q fever and was activated in patients with cured chronic Q fever. These results suggest that the determination of p38 activation may serve as a tool for measuring Q fever activity.  相似文献   
102.
Cirilli M  Zheng R  Scapin G  Blanchard JS 《Biochemistry》2003,42(36):10644-10650
Dihydrodipicolinate reductase (DHPR) catalyzes the reduced pyridine nucleotide-dependent reduction of the alpha,beta-unsaturated cyclic imine, dihydrodipicolinate, to generate tetrahydrodipicolinate. This enzyme catalyzes the second step in the bacterial biosynthetic pathway that generates meso-diaminopimelate, a component of bacterial cell walls, and the amino acid L-lysine. The Mycobacterium tuberculosis dapB-encoded DHPR has been cloned, expressed, purified, and crystallized in two ternary complexes with NADH or NADPH and the inhibitor 2,6-pyridinedicarboxylate (2,6-PDC). The structures have been solved using molecular replacement strategies, and the DHPR-NADH-2,6-PDC and DHPR-NADPH-2,6-PDC complexes have been refined against data to 2.3 and 2.5 A, respectively. The M. tuberculosis DHPR is a tetramer of identical subunits, with each subunit composed of two domains connected by two flexible hinge regions. The N-terminal domain binds pyridine nucleotide, while the C-terminal domain is involved in both tetramer formation and substrate/inhibitor binding. The M. tuberculosis DHPR uses NADH and NADPH with nearly equal efficiency based on V/K values. To probe the nature of this substrate specificity, we have generated two mutants, K9A and K11A, residues that are close to the 2'-phosphate of NADPH. These two mutants exhibit decreased specificity for NADPH by factors of 6- and 30-fold, respectively, but the K11A mutant exhibits 270% of WT activity using NADH. The highly conserved structure of the nucleotide fold may permit other enzyme's nucleotide specificity to be altered using similar mutagenic strategies.  相似文献   
103.
Phase-modulation fluorescence lifetime measurements were used to study the single Trp residue of the Ca2+-binding protein S-100a both in the absence and in the presence of Ca2+ and/or Mg2+. Trp fluorescence decay for the protein was satisfactorily described by Lorentzian lifetime distributions centered around two components (approximately 4 ns and 0.5 ns). Lifetime values were unchanged by 2 mM Ca2+, but the fractional intensity associated with longer lifetime increased up to 75%. In the presence of Mg2+, the Ca2+ induced increase of the fractional intensity associated with longer lifetime was only 57%. For the protein in buffer, about the 85% of the recovered anisotropy was associated to a rotational correlation time of 6.7 ns. After the addition of Ca2+, this value was increased to 16.08 ns. In the presence of Mg2+, Ca+2 increased the rotational correlation time to 33.75 ns. Similar studies were performed with S-100a interacting with egg phosphatidylcholine vesicles (SUV). Our data suggest that the conformation of the protein may be influenced by structural features of the lipidic membrane. Moreover, data obtained in the presence of Mg2+ indicate some interaction between lipids and S-100, likely mediated by this ion.  相似文献   
104.
Weston E  Thorogood K  Vinti G  López-Juez E 《Planta》2000,211(6):807-815
Plants acclimate to changes in light quantity by altering leaf-cell development and the accumulation of chloroplast components, such that light absorption is favoured under limiting illumination, and light utilisation under non-limiting conditions. Previous evidence suggests an involvement of a high-light photosynthetic redox signal in the down-regulation of the accumulation of the light-harvesting complexes of photosystem II (Lhcb) and the expression of the Lhcb genes, and of a blue-light signal in the control of leaf development and in the increase in photosynthetic capacity, as affected by the accumulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). We examined the internal anatomy of leaves, the ultrastructure of chloroplasts and accumulation of light-harvesting complexes and Rubisco in wild-type Arabidopsis thaliana (L.) Heynh. and in mutants in each of the three known blue-light photoreceptors, cryptochrome 1, cryptochrome 2 and phototropin, as well as a mutant in both cryptochromes. Our results indicate an extensive capacity of the Arabidopsis mesophyll cells to adapt to high light fluence rate with an increase in palisade elongation. Under high light, chloroplasts showed increased starch accumulation and reductions in the amount of granal thylakoids per chloroplast, in the proportion of chlorophyll b relative to chlorophyll a, and in the accumulation of the major Lhcb polypeptides. The responses were similar for all four mutants, with respect to their wild types. The results are consistent with either a complete redundancy in function between cryptochromes and phototropin, or their absence of involvement in the light-quantity responses tested. We observed minimal effects of light quantity on Rubisco accumulation over the range of fluence rates used, and conclude that elongation of palisade mesophyll cells and accumulation of Rubisco are controlled separately. This indicates that light acclimation must be the result of a number of individual elementary responses. Quantitative differences in the acclimatory responses were observed between the Landsberg erecta and Columbia wild-type ecotypes used. Received: 4 April 2000 / Accepted: 14 July 2000  相似文献   
105.
The exon structure of the collagen IV gene provides a striking example for collagen evolution and the role of introns in gene evolution. Collagen IV, a major component of basement membranes, differs from the fibrillar collagens in that it contains numerous interruptions in the triple helical Gly-X-Y repeat domain. We have characterized all 47 exons in the mouse alpha 2(IV) collagen gene and find two 36-, two 45-, and one 54-bp exons as well as one 99- and three 108-bp exons encoding the Gly-X-Y repeat sequence. All these exons sizes are also found in the fibrillar collagen genes. Strikingly, of the 24 interruption sequences present in the alpha 2-chain of mouse collagen IV, 11 are encoded at the exon/intron borders of the gene, part of one interruption sequence is encoded by an exon of its own, and the remaining interruptions are encoded within the body of exons. In such "fusion exons" the Gly-X-Y encoding domain is also derived from 36-, 45-, or 54-bp sequence elements. These data support the idea that collagen IV genes evolved from a primordial 54-bp coding unit. We furthermore interpret these data to suggest that the interruption sequences in collagen IV may have evolved from introns, presumably by inactivation of splice site signals, following which intronic sequences could have been recruited into exons. We speculated that this mechanism could provide a role for introns in gene evolution in general.  相似文献   
106.
107.
Leaves are specialized organs characterized by defined developmental destiny and determinate growth. The overexpression of Knotted1-like homeobox genes in different species has been shown to alter leaf shape and development, but a definite role for this class of genes remains to be established. Transgenics that overexpress Knotted1-like genes present some traits that are characteristic of altered cytokinin physiology. Here we show that lettuce (Lactuca sativa) leaves that overexpress KNAT1, an Arabidopsis kn1-like gene, acquire characteristics of indeterminate growth typical of the shoot and that this cell fate change is associated with the accumulation of specific types of cytokinins. The possibility that the phenotypic effects of KNAT1 overexpression may arise primarily from the modulation of local ratios of different cytokinins is discussed.  相似文献   
108.
Eukaryotic cells contain a delicate balance of minute amounts of the four deoxyribonucleoside triphosphates (dNTPs), sufficient only for a few minutes of DNA replication. Both a deficiency and a surplus of a single dNTP may result in increased mutation rates, faulty DNA repair or mitochondrial DNA depletion. dNTPs are usually quantified by an enzymatic assay in which incorporation of radioactive dATP (or radioactive dTTP in the assay for dATP) into specific synthetic oligonucleotides by a DNA polymerase is proportional to the concentration of the unknown dNTP. We find that the commonly used Klenow DNA polymerase may substitute the corresponding ribonucleotide for the unknown dNTP leading in some instances to a large overestimation of dNTPs. We now describe assay conditions for each dNTP that avoid ribonucleotide incorporation. For the dTTP and dATP assays it suffices to minimize the concentrations of the Klenow enzyme and of labeled dATP (or dTTP); for dCTP and dGTP we had to replace the Klenow enzyme with either the Taq DNA polymerase or Thermo Sequenase. We suggest that in some earlier reports ribonucleotide incorporation may have caused too high values for dGTP and dCTP.  相似文献   
109.
High levels of expression of the ATP binding cassette transporter A1 (ABCA1) in the liver and the need to over- or underexpress hepatic ABCA1 to impact plasma HDL levels in mice suggest a major role of the liver in HDL formation and in determining circulating HDL levels. Cultured murine hepatocytes were used to examine the role of hepatic ABCA1 in mediating the lipidation of apolipoprotein A-I (apoA-I) for HDL particle formation. Exogenous apoA-I stimulated cholesterol efflux to the medium from wild-type hepatocytes, but not from ABCA1-deficient (abca1(-/-)) hepatocytes. ApoA-I induced the formation of new HDL particles and enhanced the lipidation of endogenously secreted murine apoA-I in ABCA1-expressing but not abca1(-/-) hepatocytes. ABCA1-dependent cholesterol mobilization to apoA-I increased new cholesterol synthesis, indicating depletion of the regulatory pool of hepatocyte cholesterol during HDL formation. Secretion of triacylglycerol and apoB was decreased following apoA-I incubation with ABCA1-expressing but not abca1(-/-) hepatocytes. These results support a major role for hepatocyte ABCA1 in generating a critical pool of HDL precursor particles that enhance further HDL generation and passive cholesterol mobilization in the periphery. The results also suggest that diversion of hepatocyte cholesterol into the "reverse" cholesterol transport pathway diminishes cholesterol availability for apoB-containing lipoprotein secretion by the liver.  相似文献   
110.
Statins have been shown to interact with several monocyte/macrophage functions. We tested the effect of pravastatin on transforming growth factor-beta1 (TGF-beta1) production and its possible involvement in scavenger receptors class A (SRA) expression in human THP-1 cells. TGF-beta1s biological activity in THP-1 cell conditioned medium, evaluated by luciferase activity of transfected cell with a TGF-beta responsive promoter, was increased in a dose-dependent manner after incubation with pravastatin (1-20 microM). Pravastatin (1-20 microM) induced a dose-dependent increase in TGF-beta1 mRNA expression and protein production in THP-1 cells. PMA-induced SRA gene and protein expression was suppressed by pravastatin with a mean 3-fold decrease at 10 microM. This last effect was reversed by a mouse monoclonal anti-TGF-beta1 neutralizing antibody. PD98059, a specific inhibitor of MAP kinase cascade, completely reversed pravastatin-induced SRA down-regulation. p44 and p42 isoforms showed a dose-dependent phosphorylation after treatment with pravastatin (1-20 microM) which was inhibited by a mouse monoclonal anti-TGF-beta1 antibody. Our results demonstrate that pravastatin significantly up-regulates TGF-beta1 expression which may be in involved in down-regulation of SRA expression in THP-1 cell cultures. A new pathway for pravastatin effects in atherogenesis can be suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号