首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2169篇
  免费   139篇
  2023年   4篇
  2022年   13篇
  2021年   44篇
  2020年   28篇
  2019年   34篇
  2018年   55篇
  2017年   28篇
  2016年   66篇
  2015年   98篇
  2014年   98篇
  2013年   167篇
  2012年   186篇
  2011年   169篇
  2010年   98篇
  2009年   93篇
  2008年   138篇
  2007年   128篇
  2006年   125篇
  2005年   101篇
  2004年   114篇
  2003年   99篇
  2002年   88篇
  2001年   23篇
  2000年   14篇
  1999年   17篇
  1998年   26篇
  1997年   13篇
  1996年   20篇
  1995年   14篇
  1994年   18篇
  1993年   23篇
  1992年   14篇
  1991年   13篇
  1990年   20篇
  1989年   4篇
  1988年   11篇
  1987年   5篇
  1986年   4篇
  1985年   14篇
  1984年   6篇
  1983年   7篇
  1982年   7篇
  1981年   11篇
  1980年   4篇
  1979年   10篇
  1978年   7篇
  1975年   3篇
  1974年   4篇
  1970年   3篇
  1968年   5篇
排序方式: 共有2308条查询结果,搜索用时 15 毫秒
121.
Cirilli M  Zheng R  Scapin G  Blanchard JS 《Biochemistry》2003,42(36):10644-10650
Dihydrodipicolinate reductase (DHPR) catalyzes the reduced pyridine nucleotide-dependent reduction of the alpha,beta-unsaturated cyclic imine, dihydrodipicolinate, to generate tetrahydrodipicolinate. This enzyme catalyzes the second step in the bacterial biosynthetic pathway that generates meso-diaminopimelate, a component of bacterial cell walls, and the amino acid L-lysine. The Mycobacterium tuberculosis dapB-encoded DHPR has been cloned, expressed, purified, and crystallized in two ternary complexes with NADH or NADPH and the inhibitor 2,6-pyridinedicarboxylate (2,6-PDC). The structures have been solved using molecular replacement strategies, and the DHPR-NADH-2,6-PDC and DHPR-NADPH-2,6-PDC complexes have been refined against data to 2.3 and 2.5 A, respectively. The M. tuberculosis DHPR is a tetramer of identical subunits, with each subunit composed of two domains connected by two flexible hinge regions. The N-terminal domain binds pyridine nucleotide, while the C-terminal domain is involved in both tetramer formation and substrate/inhibitor binding. The M. tuberculosis DHPR uses NADH and NADPH with nearly equal efficiency based on V/K values. To probe the nature of this substrate specificity, we have generated two mutants, K9A and K11A, residues that are close to the 2'-phosphate of NADPH. These two mutants exhibit decreased specificity for NADPH by factors of 6- and 30-fold, respectively, but the K11A mutant exhibits 270% of WT activity using NADH. The highly conserved structure of the nucleotide fold may permit other enzyme's nucleotide specificity to be altered using similar mutagenic strategies.  相似文献   
122.
Blastocyst formation rates during horse embryo in vitro production (IVP) are disappointing, and embryos that blastulate in culture fail to produce the characteristic and vital glycoprotein capsule. The aim of this study was to evaluate the impact of IVP on horse embryo development and capsule formation. IVP embryos were produced by intracytoplasmic sperm injection of in vitro matured oocytes and either culture in synthetic oviduct fluid (SOF) or temporary transfer to the oviduct of a ewe. Control embryos were flushed from the uterus of mares 6-9 days after ovulation. Embryo morphology was evaluated with light microscopy, and multiphoton scanning confocal microscopy was used to examine the distribution of microfilaments (AlexaFluor-Phalloidin stained) and the rate of apoptosis (cells with fragmented or terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive nuclei). To examine the influence of culture on capsule formation, conceptuses were stained with a monoclonal antibody specific for capsular glycoproteins (OC-1). The blastocyst rate was higher for zygotes transferred to a sheep's oviduct (16%) than for those cultured in SOF (6.3%). Day 7 IVP embryos were small and compact with relatively few cells, little or no blastocoele, and an indistinct inner cell mass. IVP embryos had high percentages of apoptotic cells (10% versus 0.3% for in vivo embryos) and irregularly distributed microfilaments. Although they secreted capsular glycoproteins, the latter did not form a normal capsule but instead permeated into the zona pellucida or remained in patches on the trophectodermal surface. These results demonstrate that the initial layer of capsule is composed of OC-1-reactive glycoproteins and that embryo development ex vivo is retarded and aberrant, with capsule formation failing as a result of failed glycoprotein aggregation.  相似文献   
123.
We have studied changes in hepatic mitochondrial efficiency induced by 24-h fasting or acclimation at 29 degrees C, two conditions of reduced thermogenesis. Basal and palmitate-induced proton leak, which contribute to mitochondrial efficiency, are not affected after 24-h fasting, when serum free triiodothyronine decreases significantly and serum free fatty acids increase significantly. In rats at 29 degrees C, in which serum free triiodothyronine and fatty acids decrease significantly, basal proton leak increases significantly, while no variation is found in palmitate-induced proton leak. The present results indicate that mitochondrial efficiency in the liver is not related to a physiological decrease in whole body thermogenesis.  相似文献   
124.
Methylation pattern has been studied in two genes of sea urchin Paracentrotus lividus using sodium bisulfite method to understand the possible role of DNA methylation during invertebrate development. Three regions of the gene for the hatching enzyme have been analyzed and all of them resulted unmethylated in embryos at different stages of development. Four CpG rich regions have been studied in the gene for DNA methyltransferase: upstream, upstream-exon1, intron 1 and exon 20. The upstream-exon 1 region is always unmethylated, while intron 1 and exon 20 are heavy methylated. Only the upstream fragment changed its pattern of methylation during development. For none of the studied regions the reported data show a general direct correlation between gene expression and methylation process during development.  相似文献   
125.
The suppressive role of endogenous regucalcin (RC), which is a regulatory protein of calcium signaling, in the enhancement of protein phosphatase activity (PPA) in the cytosol and nucleus of kidney cortex in calcium-administered rats was investigated. Calcium content in the kidney cortex was significantly increased at 0.5-5 h after a single intraperitoneal administration of calcium chloride solution (10 mg Ca/100 g body weight) to rats. The analysis with Western blotting of RC protein showed that RC levels in the cytosol and nucleus were significantly increased 0.5-5 h after the administration of calcium (10 mg/100 g). PPA toward phosphotyrosine, phosphoserine, and phosphothreonine was found in the cytosol and nucleus of kidney cortex. PPA toward three phosphoamino acids in the cytosol and nucleus was significantly increased by the administration of calcium (10 mg/100 g). The presence of anti-RC monoclonal antibody (25 ng/ml) in the enzyme reaction caused a significant increase in PPA toward phosphotyrosine, phosphoserine, and phosphothreonine in the cytosol and nucleus of kidney cortex in normal rats. The effect of anti-RC monoclonal antibody (25 ng/ml) in increasing PPA toward three phosphoamino acids in the cytosol and nucleus was significantly enhanced in calcium-administered rats. The effect of anti-RC monoclonal antibody (25 ng/ml) in increasing PPA in the cytosol and nucleus of normal rats and calcium-administered rats was completely abolished by the addition of RC (10(- 6) M) in the enzyme reaction mixture. The present study suggests that endogenous RC suppresses the enhancement of PPA in the cytosol and nucleus of kidney cortex in calcium-administered rats.  相似文献   
126.
A number of methyl and ethyl esters of naturally occurring amino acids exert a potent stimulatory effect on the cotransport system responsible for the absorption of most essential amino acids along the midgut of the silkworm Bombyx mori. L-Leucine methyl ester (Leu-OMe), one of the most effective activators, induces a large increase of the initial rate of leucine uptake in midgut brush border membrane vesicles (BBMV) from the anterior-middle (AM) region, and a small effect in BBMV from the posterior (P) region. Nonetheless, the methyl ester causes in both regions a relevant K(+)-, Deltapsi- and pH-independent increase of the intravesicular accumulation of the amino acid. The activation by Leu-OMe proves that amino acid absorption can be modulated all along the B. mori larval midgut and that the AM region, where the ability to transport and concentrate the substrate is very low, is more susceptible than the P region. Leucine uptake in AM-BMMV can be activated by amino acid methyl esters with definite structural requisites, with the following order of potency: L-leucine>L-phenylglycine>L-methionine>L-phenylalanine>L-norleucinez.Gt;L-isoleucine. The activation is stereospecific and occurs also with some ethyl esters (e.g. leucine and phenylalanine). No activation was observed with esters of amino acids with short hydrophobic or polar side-chains. The activation mechanism here described plays a fundamental role in larval growth since silkworms reared on artificial diets supplemented with leucine or methionine methyl esters reach maximum body weight 12-18 h before control larvae and spin cocoons with a larger shell weight. This novel regulatory mechanism of an amino acid transport protein appears to be widespread among lepidopteran larvae.  相似文献   
127.
The Wisconsin hypoalpha mutant (WHAM) chicken has a >90% reduction in plasma HDL due to hypercatabolism by the kidney of lipid-poor apoA-I. The WHAM chickens have a recessive white skin phenotype caused by a single-gene mutation that maps to the chicken Z-chromosome. This corresponds to human 9q31.1, a chromosomal segment that contains the ATP-binding cassette protein-1 (ABCA1) gene, which is mutated in Tangier Disease and familial hypoalphalipoproteinemia. Complete sequencing of the WHAM ABCA1 cDNA identified a missense mutation near the N-terminus of the protein (E89K). The substitution of this evolutionary conserved glutamate residue for lysine in the mouse ABCA1 transporter leads to complete loss of function, resulting principally from defective intracellular trafficking and very little ABCA1 reaching the plasma membrane. The WHAM chicken is a naturally occurring animal model for Tangier Disease.  相似文献   
128.
129.
Human immunodeficiency virus (HIV)-1 Nef protein is an essential modulator of AIDS pathogenesis and we have previously demonstrated that rNef enters uninfected human monocytes and induces T cells bystander activation, up-regulating IL-15 production. Since dendritic cells (DCs) play a central role in HIV-1 primary infection we investigated whether rNef affects DCs phenotypic and functional maturation in order to define its role in the immunopathogenesis of AIDS. We found that rNef up-regulates the expression on immature DCs of surface molecules known to be critical for their APC function. These molecules include CD1a, HLA-DR, CD40, CD83, CXCR4, and to a lower extent CD80 and CD86. On the other hand, rNef down-regulates surface expression of HLA-ABC and mannose receptor. The functional consequence of rNef treatment of immature DCs is a decrease in their endocytic and phagocytic activities and an increase in cytokine (IL-1beta, IL-12, IL-15, TNF-alpha) and chemokine (MIP-1alpha, MIP-1beta, IL-8) production as well as in their stimulatory capacity. These results indicate that rNef induces a coordinate series of phenotypic and functional changes promoting DC differentiation and making them more competent APCs. Indeed, Nef induces CD4(+) T cell bystander activation by a novel mechanism involving DCs, thus promoting virus dissemination.  相似文献   
130.
We have previously reported that the Vdelta2(+)TCRgammadelta(+) T lymphocyte subset, expressing the NK receptor protein 1a (NKRP1a; CD161), is expanded in patients with relapsing-remitting multiple sclerosis and uses this molecule to migrate through endothelium. In this work, we show that Vdelta1(+) and Vdelta2(+) gammadelta T lymphocytes use distinct signal transduction pathways to accomplish this function. Indeed, we have found that Vdelta1(+) cells lack NKRP1a and selectively express the platelet endothelial cell adhesion molecule 1 (PECAM1; CD31), which drives transendothelial migration of this cell subset, at variance with Vdelta2(+) T cells, which are PECAM1 negative and use NKRP1a for transmigration. Interestingly, when Vdelta2(+) T cells were pretreated with two specific inhibitors of the calcium calmodulin-dependent kinase II KN62 and KN93, but not with the inactive compound KN92, the number of migrating cells and the rate of transmigration were significantly decreased. In turn, the phosphatidylinositol 3 kinase blockers wortmannin and LY294002 exerted a dose-dependent inhibition of Vdelta1(+) cell migration. Finally, NKRP1a and PECAM1 engagement led to activation of different signal transduction pathways: indeed, oligomerization of NKRP1a on Vdelta2(+) T cells activates calcium calmodulin-dependent kinase II, while occupancy of PECAM1 on Vdelta1(+) cells triggers the phosphatidylinositol 3 kinase-dependent Akt/protein kinase Balpha activation. These findings suggest that subsets of gammadelta T lymphocytes may migrate to the site of lesion in multiple sclerosis using two different signaling pathways to extravasate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号