首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2164篇
  免费   138篇
  2023年   4篇
  2022年   19篇
  2021年   42篇
  2020年   28篇
  2019年   34篇
  2018年   56篇
  2017年   32篇
  2016年   67篇
  2015年   99篇
  2014年   97篇
  2013年   166篇
  2012年   183篇
  2011年   169篇
  2010年   95篇
  2009年   91篇
  2008年   140篇
  2007年   133篇
  2006年   122篇
  2005年   102篇
  2004年   114篇
  2003年   99篇
  2002年   93篇
  2001年   23篇
  2000年   12篇
  1999年   14篇
  1998年   25篇
  1997年   13篇
  1996年   19篇
  1995年   14篇
  1994年   18篇
  1993年   23篇
  1992年   14篇
  1991年   14篇
  1990年   20篇
  1989年   4篇
  1988年   10篇
  1987年   5篇
  1986年   4篇
  1985年   14篇
  1984年   6篇
  1983年   7篇
  1982年   7篇
  1981年   11篇
  1980年   4篇
  1979年   10篇
  1978年   7篇
  1975年   3篇
  1974年   4篇
  1971年   2篇
  1968年   2篇
排序方式: 共有2302条查询结果,搜索用时 953 毫秒
991.
Abstract: The effect of pros -methylimidazoleacetic acid (p-MIAA) was measured on the release of glutamate and aspartate from cerebral cortex, hippocampus, and striatum of freely moving rats, and on the uptake of 14C by striatal slices incubated in the presence of l -[14C]-glutamate. Twenty-four hours after implantation of a dialysis fiber, striatum, hippocampus, or cerebral cortex spontaneously released both glutamate and aspartate in the micromolar range. p-MIAA (1 µ M to 1 m M ), added to the dialysis perfusate, elicited a concentration-dependent increase of glutamate release from striatum with a maximal increase of about threefold. This effect did not occur in hippocampus or cortex. In none of these regions did p-MIAA increase aspartate release significantly. The p-MIAA effect was not mimicked by its isomer tele -methylimidazoleacetic acid. p-MIAA did not influence the uptake of glutamate by striatal slices. The glutamate-releasing action of p-MIAA may affect striatal function and explain the positive correlation between levels of p-MIAA in CSF and the severity of Parkinson's disease.  相似文献   
992.
Although initially identified and best characterized for their role in innate antiviral defence, type I interferons (IFN-I) are also known to have an important impact on the adaptive immune response. In part, this is linked to another long-recognised property of IFN-I, namely their ability to modify cellular proliferation and survival. Here, we review the influence of IFN-I on immune cell homeostasis, focusing on their effects on T cells and antigen-presenting cells.  相似文献   
993.
Higher alcohol and acetoin production by Zygosaccharomyces wine yeasts   总被引:1,自引:1,他引:0  
Seventy strains of Zygosaccharomyces isolated from grape musts were investigated for their ability to produce higher alcohols and acetoin in synthetic medium and grape must. The Zygosaccharomyces strains produced generally low amounts of higher alcohols. Within this genus, Z. fermentati behaved differently from Z. bailii producing less isobutanol in synthetic medium and more amyl alcohols and isobutanol in grape must. Zygosaccharomyces fermentati did not form detectable amounts of acetoin in any conditions whereas Z. bailii produced it both in synthetic medium and in grape must. These strains were found to contribute to aroma and taste of wine.  相似文献   
994.
995.
996.
Cyanovirin-N (CVN), a cyanobacterial lectin, exemplifies a class of antiviral agents that inhibit HIV by binding to the highly glycosylated envelope protein gp120. Here, we investigate the energetics of glycan recognition using a computationally inexpensive flexible docking approach, backbone perturbation docking (BP-Dock). We benchmarked our method using two mutants of CVN: P51G-m4-CVN, which binds dimannose with high affinity through domain B, and CVN(mutDB), in which binding to domain B has been abolished through mutation of five polar residues to small nonpolar side chains. We investigated the energetic contribution of these polar residues along with the additional position 53 by docking dimannose to single-point CVN mutant models. Analysis of the docking simulations indicated that the E41A/G and T57A mutations led to a significant decrease in binding energy scores due to rearrangements of the hydrogen-bond network that reverberated throughout the binding cavity. N42A decreased the binding score to a level comparable to that of CVN(mutDB) by affecting the integrity of the local protein structure. In contrast, N53S resulted in a high binding energy score, similar to P51G-m4-CVN. Experimental characterization of the five mutants by NMR spectroscopy confirmed the binding affinity pattern predicted by BP-Dock. Despite their mostly conserved fold and stability, E41A, E41G, and T57A displayed dissociation constants in the millimolar range. N53S showed a binding constant in the low micromolar range, similar to that observed for P51G-m4-CVN. No binding was observed for N42A. Our results show that BP-Dock is a useful tool for rapidly screening the relative binding affinity pattern of in silico-designed mutants compared with wild-type, supporting its use to design novel mutants with enhanced binding properties.  相似文献   
997.
Pot trials were carried out under controlled conditions to evaluate the effectiveness against Fusarium wilt of rocket (Fusarium oxysporum f.sp. conglutinans) and basil (Foxysporum f.sp. basilici) of soil amendments based on a patented formulation of Brassica carinata defatted seed meal and compost, combined or not with a simulation of soil solarization. The soil solarization treatment was carried out in a growth chamber by heating the soil for 7 and 14 days at optimal (55–52°C for 6 h, 50–48°C for 8 h and 47–45°C for 10 h/day) and sub‐optimal (50–48°C for 6 h, 45–43°C for 8 h and 40–38°C for 10 h/day) temperatures similar to those observed in summer in solarized soil in greenhouses in Northern Italy. Two subsequent cycles of plant cultivation were carried out in the same soil. Even at sub‐optimal temperature regimes, 7 days of thermal treatment provided very valuable results in terms of disease control on both rocket and basil. In general, the thermal treatment was more effective against F. oxysporum f.sp. basilici than against Foxysporum f.sp. conglutinans. Control of Fusarium wilt of rocket is improved with 14 days of thermal treatment. The combination of organic amendments with a short period of soil solarization (7 or 14 days), although not providing any improvement to the level of disease management, did significantly increase biomass and positively affected yield.  相似文献   
998.
999.
1000.
Supercritical carbon dioxide (SC-CO2) treatment is one of the most promising alternative techniques for pasteurization of both liquid and solid food products. The inhibitory effect of SC-CO2 on bacterial growth has been investigated in different species, but the precise mechanism of action remains unknown. Membrane permeabilization has been proposed to be the first event in SC-CO2-mediated inactivation. Flow cytometry, high performance liquid chromatographyelectrospray ionization–mass spectrometry and NMR analyses were performed to investigate the effect of SC-CO2 treatment on membrane lipid profile and membrane permeability in Escherichia coli K12. After 15 min of SC-CO2 treatment at 120 bar and 35 °C, the majority of bacterial cells dissipated their membrane potential (95 %) and lost membrane integrity, as 81 % become partially permeabilized and 18 % fully permeabilized. Membrane permeabilization was associated with a 20 % decrease in bacterial biovolume and to a strong (>50 %) reduction in phosphatidylglycerol (PG) membrane lipids, without altering the fatty acid composition and the degree of unsaturation of acyl chains. PGs are thought to play an important role in membrane stability, by reducing motion of phosphatidylethanolamine (PE) along the membrane bilayer, therefore promoting the formation of inter-lipid hydrogen bonds. In addition, the decrease in intracellular pH induced by SC-CO2 likely alters the chemical properties of phospholipids and the PE/PG ratio. Biophysical effects of SC-CO2 thus cause a strong perturbation of membrane architecture in E. coli, and such alterations are likely associated with its strong inactivation effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号