全文获取类型
收费全文 | 2426篇 |
免费 | 158篇 |
专业分类
2584篇 |
出版年
2023年 | 8篇 |
2022年 | 25篇 |
2021年 | 51篇 |
2020年 | 30篇 |
2019年 | 39篇 |
2018年 | 57篇 |
2017年 | 35篇 |
2016年 | 78篇 |
2015年 | 115篇 |
2014年 | 104篇 |
2013年 | 185篇 |
2012年 | 216篇 |
2011年 | 181篇 |
2010年 | 101篇 |
2009年 | 97篇 |
2008年 | 156篇 |
2007年 | 133篇 |
2006年 | 135篇 |
2005年 | 113篇 |
2004年 | 124篇 |
2003年 | 104篇 |
2002年 | 99篇 |
2001年 | 28篇 |
2000年 | 17篇 |
1999年 | 17篇 |
1998年 | 29篇 |
1997年 | 13篇 |
1996年 | 21篇 |
1995年 | 13篇 |
1994年 | 21篇 |
1993年 | 27篇 |
1992年 | 18篇 |
1991年 | 15篇 |
1990年 | 26篇 |
1989年 | 7篇 |
1988年 | 13篇 |
1987年 | 8篇 |
1986年 | 8篇 |
1985年 | 20篇 |
1984年 | 8篇 |
1983年 | 8篇 |
1982年 | 8篇 |
1981年 | 13篇 |
1980年 | 8篇 |
1979年 | 14篇 |
1978年 | 8篇 |
1975年 | 4篇 |
1974年 | 7篇 |
1973年 | 3篇 |
1968年 | 3篇 |
排序方式: 共有2584条查询结果,搜索用时 15 毫秒
111.
Tremoleda JL Stout TA Lagutina I Lazzari G Bevers MM Colenbrander B Galli C 《Biology of reproduction》2003,69(6):1895-1906
Blastocyst formation rates during horse embryo in vitro production (IVP) are disappointing, and embryos that blastulate in culture fail to produce the characteristic and vital glycoprotein capsule. The aim of this study was to evaluate the impact of IVP on horse embryo development and capsule formation. IVP embryos were produced by intracytoplasmic sperm injection of in vitro matured oocytes and either culture in synthetic oviduct fluid (SOF) or temporary transfer to the oviduct of a ewe. Control embryos were flushed from the uterus of mares 6-9 days after ovulation. Embryo morphology was evaluated with light microscopy, and multiphoton scanning confocal microscopy was used to examine the distribution of microfilaments (AlexaFluor-Phalloidin stained) and the rate of apoptosis (cells with fragmented or terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive nuclei). To examine the influence of culture on capsule formation, conceptuses were stained with a monoclonal antibody specific for capsular glycoproteins (OC-1). The blastocyst rate was higher for zygotes transferred to a sheep's oviduct (16%) than for those cultured in SOF (6.3%). Day 7 IVP embryos were small and compact with relatively few cells, little or no blastocoele, and an indistinct inner cell mass. IVP embryos had high percentages of apoptotic cells (10% versus 0.3% for in vivo embryos) and irregularly distributed microfilaments. Although they secreted capsular glycoproteins, the latter did not form a normal capsule but instead permeated into the zona pellucida or remained in patches on the trophectodermal surface. These results demonstrate that the initial layer of capsule is composed of OC-1-reactive glycoproteins and that embryo development ex vivo is retarded and aberrant, with capsule formation failing as a result of failed glycoprotein aggregation. 相似文献
112.
Dihydrodipicolinate reductase (DHPR) catalyzes the reduced pyridine nucleotide-dependent reduction of the alpha,beta-unsaturated cyclic imine, dihydrodipicolinate, to generate tetrahydrodipicolinate. This enzyme catalyzes the second step in the bacterial biosynthetic pathway that generates meso-diaminopimelate, a component of bacterial cell walls, and the amino acid L-lysine. The Mycobacterium tuberculosis dapB-encoded DHPR has been cloned, expressed, purified, and crystallized in two ternary complexes with NADH or NADPH and the inhibitor 2,6-pyridinedicarboxylate (2,6-PDC). The structures have been solved using molecular replacement strategies, and the DHPR-NADH-2,6-PDC and DHPR-NADPH-2,6-PDC complexes have been refined against data to 2.3 and 2.5 A, respectively. The M. tuberculosis DHPR is a tetramer of identical subunits, with each subunit composed of two domains connected by two flexible hinge regions. The N-terminal domain binds pyridine nucleotide, while the C-terminal domain is involved in both tetramer formation and substrate/inhibitor binding. The M. tuberculosis DHPR uses NADH and NADPH with nearly equal efficiency based on V/K values. To probe the nature of this substrate specificity, we have generated two mutants, K9A and K11A, residues that are close to the 2'-phosphate of NADPH. These two mutants exhibit decreased specificity for NADPH by factors of 6- and 30-fold, respectively, but the K11A mutant exhibits 270% of WT activity using NADH. The highly conserved structure of the nucleotide fold may permit other enzyme's nucleotide specificity to be altered using similar mutagenic strategies. 相似文献
113.
114.
115.
Dual target strategy: combining distinct non‐dopaminergic treatments reduces neuronal cell loss and synergistically modulates l‐DOPA‐induced rotational behavior in a rodent model of Parkinson's disease 下载免费PDF全文
Marie‐Therese Fuzzati‐Armentero Silvia Cerri Giovanna Levandis Giulia Ambrosi Elena Montepeloso Gianfilippo Antoninetti Fabio Blandini Younis Baqi Christa E. Müller Rosaria Volpini Giulia Costa Nicola Simola Annalisa Pinna 《Journal of neurochemistry》2015,134(4):740-747
The glutamate metabotropic receptor 5 (mGluR5) and the adenosine A2A receptor (A2AR) represent major non‐dopaminergic therapeutic targets in Parkinson's disease (PD) to improve motor symptoms and slow down/revert disease progression. The 6‐hydroxydopamine rat model of PD was used to determine/compare the neuroprotective and behavioral impacts of single and combined administration of one mGluR5 antagonist, 2‐methyl‐6‐(phenylethynyl)pyridine (MPEP), and two A2AR antagonists, (E)‐phosphoric acid mono‐[3‐[8‐[2‐(3‐methoxyphenyl)vinyl]‐7‐methyl‐2,6‐dioxo‐1‐prop‐2‐ynyl‐1,2,6,7‐tetrahydropurin‐3‐yl]propyl] (MSX‐3) and 8‐ethoxy‐9‐ethyladenine (ANR 94). Chronic treatment with MPEP or MSX‐3 alone, but not with ANR 94, reduced the toxin‐induced loss of dopaminergic neurons in the substantia nigra pars compacta. Combining MSX‐3 and MPEP further improved the neuroprotective effect of either antagonists. At the behavioral level, ANR 94 and MSX‐3 given alone significantly potentiated l ‐DOPA‐induced turning behavior. Combination of either A2AR antagonists with MPEP synergistically increased L‐DOPA‐induced turning. This effect was dose‐dependent and required subthreshold drug concentration, which per se had no motor stimulating effect. Our findings suggest that co‐treatment with A2AR and mGluR5 antagonists provides better therapeutic benefits than those produced by either drug alone. Our study sheds some light on the efficacy and advantages of combined non‐dopaminergic PD treatment using low drug concentration and establishes the basis for in‐depth studies to identify optimal doses at which these drugs reach highest efficacy.
116.
Giorgia Manzo Mariano A. Scorciapino Parvesh Wadhwani Jochen Bürck Nicola Pietro Montaldo Manuela Pintus Roberta Sanna Mariano Casu Andrea Giuliani Giovanna Pirri Vincenzo Luca Anne S. Ulrich Andrea C. Rinaldi 《PloS one》2015,10(1)
SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a β-stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2, β-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular β-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, β-SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056-lin and β-SB056-lin adopt a β-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized β-SB056-lin forms well-ordered β-strands once electro-neutrality is approached, and it aggregates into more extended β-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended β-sheets, which also leads to a dramatic alteration of membrane integrity as shown by 31P-NMR. These findings are generally relevant for the design and optimization of other membrane-active antimicrobial peptides that can fold into amphipathic β-strands. 相似文献
117.
Antonella Muscella Carla Vetrugno Luca Giulio Cossa Giovanna Antonaci Francesco De Nuccio Sandra Angelica De Pascali Francesco Paolo Fanizzi Santo Marsigliante 《PloS one》2016,11(11)
Malignant pleural mesothelioma (MPM) is an aggressive malignancy highly resistant to chemotherapy. There is an urgent need for effective therapy inasmuch as resistance, intrinsic and acquired, to conventional therapies is common. Among Pt(II) antitumor drugs, [Pt(O,O′-acac)(γ-acac)(DMS)] (Ptac2S) has recently attracted considerable attention due to its strong in vitro and in vivo antiproliferative activity and reduced toxicity. The purpose of this study was to examine the efficacy of Ptac2S treatment in MPM. We employed the ZL55 human mesothelioma cell line in vitro and in a murine xenograft model in vivo, to test the antitumor activity of Ptac2S. Cytotoxicity assays and Western blottings of different apoptosis and survival proteins were thus performed. Ptac2S increases MPM cell death in vitro and in vivo compared with cisplatin. Ptac2S was more efficacious than cisplatin also in inducing apoptosis characterized by: (a) mitochondria depolarization, (b) increase of bax expression and its cytosol-to-mitochondria translocation and decrease of Bcl-2 expression, (c) activation of caspase-7 and -9. Ptac2S activated full-length PKC-δ and generated a PKC-δ fragment. Full-length PKC-δ translocated to the nucleus and membrane, whilst PKC-δ fragment concentrated to mitochondria. Ptac2S was also responsible for the PKC-ε activation that provoked phosphorylation of p38. Both PKC-δ and PKC-ε inhibition (by PKC–siRNA) reduced the apoptotic death of ZL55 cells. Altogether, our results confirm that Ptac2S is a promising therapeutic agent for malignant mesothelioma, providing a solid starting point for its validation as a suitable candidate for further pharmacological testing. 相似文献
118.
The development and validation of reliable in vitro methods alternative to conventional in vivo studies in experimental animals is a well-recognised priority in the fields of pharmaco-toxicology and food research. Conventional studies based on two-dimensional (2-D) cell monolayers have demonstrated their significant limitations: the chemically and spatially defined three-dimensional (3-D) network of extracellular matrix components, cell-to-cell and cell-to-matrix interactions that governs differentiation, proliferation and function of cells in vivo is, in fact, lost under the simplified 2-D condition. Being able to reproduce specific tissue-like structures and to mimic functions and responses of real tissues in a way that is more physiologically relevant than what can be achieved through traditional 2-D cell monolayers, 3-D cell culture represents a potential bridge to cover the gap between animal models and human studies. This article addresses the significance and the potential of 3-D in vitro systems to improve the predictive value of cell-based assays for safety and risk assessment studies and for new drugs development and testing. The crucial role of tissue engineering and of the new microscale technologies for improving and optimising these models, as well as the necessity of developing new protocols and analytical methods for their full exploitation, will be also discussed. 相似文献
119.
CYP116B5: a new class VII catalytically self‐sufficient cytochrome P450 from Acinetobacter radioresistens that enables growth on alkanes 下载免费PDF全文
Daniela Minerdi Sheila J. Sadeghi Giovanna Di Nardo Francesco Rua Silvia Castrignanò Paola Allegra Gianfranco Gilardi 《Molecular microbiology》2015,95(3):539-554
A gene coding for a class VII cytochrome P450 monooxygenase (CYP116B5) was identified from Acinetobacter radioresistens S13 growing on media with medium (C14, C16) and long (C24, C36) chain alkanes as the sole energy source. Phylogenetic analysis of its N‐ and C‐terminal domains suggests an evolutionary model involving a plasmid‐mediated horizontal gene transfer from the donor Rhodococcus jostii RHA1 to the receiving A. radioresistens S13. This event was followed by fusion and integration of the new gene in A. radioresistens chromosome. Heterologous expression of CYP116B5 in Escherichia coli BL21, together with the A. radioresistens Baeyer–Villiger monooxygenase, allowed the recombinant bacteria to grow on long‐ and medium‐chain alkanes, showing that CYP116B5 is involved in the first step of terminal oxidation of medium‐chain alkanes overlapping AlkB and in the first step of sub‐terminal oxidation of long‐chain alkanes. It was also demonstrated that CYP116B5 is a self‐sufficient cytochrome P450 consisting of a heme domain (aa 1–392) involved in the oxidation step of n‐alkanes degradation, and its reductase domain (aa 444–758) comprising the NADPH‐, FMN‐ and [2Fe2S]‐binding sites. To our knowledge, CYP116B5 is the first member of this class to have its natural substrate and function identified. 相似文献
120.
Consumer–plant interaction strength: importance of body size,density and metabolic biomass 下载免费PDF全文
Rebecca L. Atkins John N. Griffin Christine Angelini Mary I. O'Connor Brian R. Silliman 《Oikos》2015,124(10):1274-1281
Explaining variability in the strength and sign of trophic interactions between primary consumers and plants is a long‐standing research challenge. Consumer density and body size vary widely in space and time and are predicted to have interactive effects on consumer–plant interactions. In a southern US salt marsh, we used replicate field enclosures to orthogonally manipulate the body size (mass) and density of a dominant consumer (a snail). We investigated impacts (leaf damage and biomass) on monocultures of cordgrass, the foundation species, over three months. Increasing consumer density and body size increased leaf damage additively and, as predicted, multiplicatively reduced plant biomass. Notably, size and density determined the sign of consumer impact on plants: low to medium densities of small consumers enhanced, while high densities of large consumers strongly suppressed, plant biomass. Finally, total consumer metabolic biomass (mass0.75) within an enclosure parsimoniously explained plant biomass response, supporting theoretical predictions and suggesting that multiplicative effects of density and body size resulted from their effects on total metabolic biomass. The consequences of changes in consumer density and body size resulting from anthropogenic perturbations may therefore be predicted based on metabolic biomass. Synthesis Consumer size, density and biomass can all strongly affect consumer–plant interactions. Though density and body size have been extensively studied as drivers of variation in interaction strength, the role of biomass as the ultimate driver has been less appreciated. We manipulated body size and density of a single consumer species and, based on metabolic theory, integrated these into a single variable: total metabolic biomass. Our results suggest that changes in interaction strength attributed to size or density may in fact be due to changes in metabolic biomass. This metric could thus serve as a useful tool in further understanding species interactions. 相似文献