首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3033篇
  免费   160篇
  3193篇
  2022年   23篇
  2021年   31篇
  2020年   20篇
  2019年   40篇
  2018年   44篇
  2017年   46篇
  2016年   83篇
  2015年   114篇
  2014年   115篇
  2013年   218篇
  2012年   220篇
  2011年   200篇
  2010年   122篇
  2009年   116篇
  2008年   190篇
  2007年   188篇
  2006年   187篇
  2005年   167篇
  2004年   151篇
  2003年   139篇
  2002年   129篇
  2001年   30篇
  2000年   19篇
  1999年   30篇
  1998年   25篇
  1997年   32篇
  1996年   27篇
  1995年   28篇
  1994年   23篇
  1993年   29篇
  1992年   26篇
  1991年   25篇
  1990年   27篇
  1989年   16篇
  1988年   23篇
  1987年   18篇
  1986年   16篇
  1985年   16篇
  1984年   27篇
  1983年   24篇
  1982年   19篇
  1981年   16篇
  1980年   20篇
  1979年   20篇
  1978年   21篇
  1977年   11篇
  1976年   10篇
  1975年   10篇
  1974年   9篇
  1973年   12篇
排序方式: 共有3193条查询结果,搜索用时 0 毫秒
991.
In the present study, we compared the effect of 5% oxygen tension (hypoxia) with a normal tension of 21% oxygen (normoxia) on macrophage infection by the protozoan parasite Leishmania amazonensis. Macrophages from different sources (human cell line U937, murine cell line J774, and murine peritoneal macrophages) exposed to hypoxia showed a reduction of the percentage of infected cells and the number of intracellular parasites per cell. Observations on the kinetics of infection indicated that hypoxia did not depress L. amazonensis phagocytosis but induced macrophages to reduce intracellular parasitism. Furthermore, hypoxia did not act synergistically with gamma-interferon and bacterial lipopolysaccharides in macrophages to induce killing of parasites. Experiments also indicated no correlation between nitric oxide production and control of infection in macrophages under hypoxic condition. Thus, we have provided the first evidence that hypoxia, which occurs in various pathological conditions, can alter macrophage susceptibility to a parasitic infection.  相似文献   
992.
High levels of endogenous estrogens are associated with increased risks of breast cancer. Estrogen levels are mainly increased by the activity of the aromatase enzyme and reduced by oxidative/conjugative metabolic pathways. In this paper, we demonstrate for the first time that catechol estrogen metabolites are potent aromatase inhibitors, thus establishing a link between aromatase activity and the processes involved in estrogen metabolism. In particular, the anti-aromatase activity of a set of natural hydroxyl and methoxyl estrogen metabolites was investigated using biochemical methods and subsequently compared with the anti-aromatase potency of estradiol and two reference aromatase inhibitors. Catechol estrogens proved to be strong inhibitors with an anti-aromatase potency two orders of magnitude higher than estradiol. A competitive inhibition mechanism was found for the most potent molecule, 2-hydroxyestradiol (2-OHE(2)) and a rational model identifying the interaction determinants of the metabolites with the enzyme is proposed based on ab initio quantum-mechanical calculations. A strong relationship between activity and electrostatic properties was found for catechol estrogens. Moreover, our results suggest that natural catechol estrogens may be involved in the control mechanisms of estrogen production.  相似文献   
993.
Engineered nanomaterials are commonly defined as materials with at least one dimension of 100 nanometers or less. Such materials typically possess nanostructure-dependent properties (e.g., chemical, mechanical, electrical, optical, magnetic, biological), which make them desiderable for commercial or medical application. However, these same properties may potentially lead to nanostructure-dependent biological activity that differs from and is not directly predicted by the bulk properties of the constitutive chemicals and compounds. Nanoparticles and nanomaterials can be on the same scale of living cells components, including proteins, nucleic acids, lipids and cellular organelles. When considering nanoparticles it must be asked how man-made nanostructures can interact with or influence biological systems. Carbon nanotubes (CNTs) are an example of carbon-based nanomaterial, which has won a huge spreading in nanotechnology. The incorporation of CNTs in living systems has raised many concerns because of their hydrophobicity and tendency to aggregate and accumulate into cells, organs, and tissues with dangerous effects.  相似文献   
994.
The use of “altered peptide ligands” (APL), epitopes designed for exerting increased immunogenicity as compared with native determinants, represents nowadays one of the most utilized strategies for overcoming immune tolerance to self-antigens and boosting anti-tumor T cell-mediated immune responses. However, the actual ability of APL-primed T cells to cross-recognize natural epitopes expressed by tumor cells remains a crucial concern. In the present study, we show that CAP1-6D, a superagonist analogue of a carcinoembriyonic antigen (CEA)-derived HLA-A*0201-restricted epitope widely used in clinical setting, reproducibly promotes the generation of low-affinity CD8+ T cells lacking the ability to recognized CEA-expressing colorectal carcinoma (CRC) cells. Short-term T cell cultures, obtained by priming peripheral blood mononuclear cells from HLA-A*0201+ healthy donors or CRC patients with CAP1-6D, were indeed found to heterogeneously cross-react with saturating concentrations of the native peptide CAP1, but to fail constantly lysing or recognizing through IFN- γ release CEA+CRC cells. Characterization of anti-CAP1-6D T cell avidity, gained through peptide titration, CD8-dependency assay, and staining with mutated tetramers (D227K/T228A), revealed that anti-CAP1-6D T cells exerted a differential interaction with the two CEA epitopes, i.e., displaying high affinity/CD8-independency toward the APL and low affinity/CD8-dependency toward the native CAP1 peptide. Our data demonstrate that the efficient detection of self-antigen expressed by tumors could be a feature of high avidity CD8-independent T cells, and underline the need for extensive analysis of tumor cross-recognition prior to any clinical usage of APL as anti-cancer vaccines.  相似文献   
995.
The effect of a transition from grassland to second‐generation (2G) bioenergy on soil carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on which to validate landscape‐scale models, sustainability criteria and energy policies. Here, we quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance for short rotation coppice (SRC) bioenergy willow and a paired grassland site, both planted at commercial scale. We quantified the carbon balance for a 2‐year period and captured the effects of a commercial harvest in the SRC willow at the end of the first cycle. Soil fluxes of nitrous oxide (N2O) and methane (CH4) did not contribute significantly to the GHG balance of these land uses. Soil respiration was lower in SRC willow (912 ± 42 g C m?2 yr?1) than in grassland (1522 ± 39 g C m?2 yr?1). Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon with mean NEE of 119 ± 10 g C m?2 yr?1 and SRC willow a net sink, ?620 ± 18 g C m?2 yr?1. When carbon removed from the ecosystem in harvested products was considered (Net Biome Productivity), SRC willow remained a net sink (221 ± 66 g C m?2 yr?1). Despite the SRC willow site being a net sink for carbon, soil carbon stocks (0–30 cm) were higher under the grassland. There was a larger NEE and increase in ecosystem respiration in the SRC willow after harvest; however, the site still remained a carbon sink. Our results indicate that once established, significant carbon savings are likely in SRC willow compared with the minimally managed grassland at this site. Although these observed impacts may be site and management dependent, they provide evidence that land‐use transition to 2G bioenergy has potential to provide a significant improvement on the ecosystem service of climate regulation relative to grassland systems.  相似文献   
996.
The analysis of very complex proteomes is dependent on efficient fractionation methods with low level of carry over from fraction to fraction. Among various possibilities the separation by ranges of isoelectric points for further analysis appears as attractive, but current methods involving an electrically driven migration in the presence of ampholyte carriers are not exempt of technical complications. In the present work a new separation concept is described involving the use of so-called solid-state buffers, in association with ion exchangers, to separate protein categories of different pI ranges with a low level of protein overlapping. Resin blends packed in separated columns are used under a cascade configuration of increasing or decreasing pH and, once proteins of different pI are adsorbed by individual resin blends, the columns are dissociated. From each column protein mixtures corresponding to a given pI range are collected by competitive desorption with salts so as to be ready for proteomic analysis. The process is rapid and does not involve electrical fields nor addition of carrier ampholyte material. The presence of potassium chloride during the separation prevents protein precipitation at the vicinicity of their isoelectric points. The fractions thus obtained can be used for two dimensional electrophoresis and mass spectrometry analysis after the removal of salts.  相似文献   
997.
In remote regions of the world, whole lake metabolic estimates are scarce, largely because long incubations, intensive sampling and deployment of monitoring equipment are impractical. The oxygen isotope (δ18O) mass balance approach represents a simple and efficient alternative to measure whole-lake gross primary production (GPP) and respiration (R) from a single point sample, yet this option has not been extensively explored in habitats such as remote northern lakes. Here, we explored the applicability of the method using a sensitivity analysis on simulated data, showing that in large, heterotrophic (i.e., R > GPP) lakes, model outputs are sensitive to input terms for isotopic fractionation and air–water gas exchange. Despite these sensitivities, field applications of the δ18O method generated promising results that were generally consistent with parallel, free-water diel DO metabolic modelling, but greater than in vitro incubation measurements. The isotopic approach captured both wide-ranging metabolic conditions in in situ experimental mesocosms, and the seasonal trends in GPP and R in a shallow, dystrophic lake. In a clearer, deeper heterotrophic lake, the isotope approach integrated a fraction of metalimnetic metabolism missed by diel DO metabolic estimates. Overall, metalimnetic contributions to surface δ18O–DO dynamics had the greatest impact on model outputs, but with accurate information on air–water gas exchange, mixing depth, and the vertical DO and light regime of a given system, these effects can be accounted for and the isotopic approach can yield well constrained, spatio-temporally integrated rates of GPP and R. The approach is clearly suitable for use in oligo- and mesotrophic lakes, especially in remote regions where sampling is logistically difficult.  相似文献   
998.
Emerging in vitro evidence points to an immunomodulatory activity of DNA hypomethylating drugs in human malignancies. We investigated the potential of 5-aza-2'-deoxycytidine (5-AZA-CdR) to modulate the expression of cancer testis antigens (CTA) and of HLA class I antigens by melanoma xenografts, and the resulting modifications in immunogenicity of neoplastic cells. Three primary cultures of melanoma cells, selected for immune phenotype and growth rate, were grafted into BALB/c nu/nu mice that were injected intraperitoneally with different dose- and time-schedules of 5-AZA-CdR. Molecular analyses demonstrated a de novo long-lasting expression of the CTA MAGE-1, -2, -3, -4, -10, GAGE 1-6, NY-ESO-1, and the upregulation of MAGE-1, MAGE-3, and NY-ESO-1 levels in melanoma xenografts from 5-AZA-CdR-treated mice. Serological and biochemical analyses identified a de novo expression of NY-ESO-1 protein and a concomitant and persistent upregulation of HLA class I antigens and of HLA-A1 and -A2 alleles. Immunization of BALB/c mice with 5-AZA-CdR-treated melanoma cells generated high titer circulating anti-NY-ESO-1 antibodies. Altogether, the data obtained identify an immunomodulatory activity of 5-AZA-CdR in vivo and strongly suggest for its clinical use to design novel strategies of CTA-based chemo-immunotherapy for melanoma patients.  相似文献   
999.
Phytosterols (beta-sitosterol, cholestanol and campesterol) and cholesterol precursors (desmosterol and lathosterol), have been suggested as important biochemical markers of intestinal cholesterol absorption and liver biosynthesis, respectively, and as useful clinical parameters in the study of hypercholesterolemia, beta-sitosterolemia, atherosclerosis and cardiovascular disease, including pharmacological response to hypolipidemic agents. We developed an optimised analytical method for the simultaneous analysis of cholestanol, desmosterol, lathosterol, campesterol and beta-sitosterol in plasma using capillary gas chromatography coupled to mass spectrometry (GC-MS) with multiple selected ion monitoring (SIM). This method is based on the alkaline hydrolysis of sterol esters, extraction of free sterols and derivatization. The recovery of all sterols was in the range 76-101%. Within-day relative standard deviations (R.S.Ds.) and the between-day R.S.Ds. of cholestanol, desmosterol, lathosterol, campesterol and beta-sitosterol were less than 8%, and their plasma levels in 161 normal subjects were (mean+/-S.D.) 4.73+/-2.57, 2.37+/-1.04, 6.23+/-3.14, 3.67+/-1.95 and 5.92+/-3.62 micromol/l, respectively.  相似文献   
1000.
Mitochondria, through oxidative phosphorylation, are the primary source of energy production in all tissues under aerobic conditions. Although critical to life, energy production is not the only function of mitochondria, and the composition of this organelle is tailored to meet the specific needs of each cell type. As an organelle, the mitochondrion has been a popular subject for proteomic analysis, but quantitative proteomic methods have yet to be applied to tease apart subtle differences among mitochondria from different tissues or muscle types. Here we used mass spectrometry-based proteomics to analyze mitochondrial proteins extracted from rat skeletal muscle, heart, and liver tissues. Based on 689 proteins identified with high confidence, mitochondria from the different tissues are qualitatively quite similar. However, striking differences emerged from the quantitative comparison of protein abundance between the tissues. Furthermore we applied similar methods to analyze mitochondrial matrix and intermembrane space proteins extracted from the same mitochondrial source, providing evidence for the submitochondrial localization of a number of proteins in skeletal muscle and liver. Several proteins not previously thought to reside in mitochondria were identified, and their presence in this organelle was confirmed by protein correlation profiling. Hierarchical clustering of microarray expression data provided further evidence that some of the novel mitochondrial candidates identified in the proteomic survey might be associated with mitochondria. These data reveal several important distinctions between mitochondrial and submitochondrial proteomes from skeletal muscle, heart, and liver tissue sources. Indeed approximately one-third of the proteins identified in the soluble fractions are associated predominantly to one of the three tissues, indicating a tissue-dependent regulation of mitochondrial proteins. Furthermore a small percentage of the mitochondrial proteome is unique to each tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号