首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3684篇
  免费   211篇
  3895篇
  2022年   24篇
  2021年   39篇
  2020年   27篇
  2019年   43篇
  2018年   54篇
  2017年   60篇
  2016年   94篇
  2015年   130篇
  2014年   133篇
  2013年   249篇
  2012年   249篇
  2011年   220篇
  2010年   133篇
  2009年   136篇
  2008年   211篇
  2007年   213篇
  2006年   210篇
  2005年   182篇
  2004年   169篇
  2003年   152篇
  2002年   148篇
  2001年   53篇
  2000年   55篇
  1999年   55篇
  1998年   32篇
  1997年   39篇
  1996年   36篇
  1995年   31篇
  1994年   27篇
  1993年   35篇
  1992年   42篇
  1991年   46篇
  1990年   35篇
  1989年   25篇
  1988年   34篇
  1987年   38篇
  1986年   27篇
  1985年   24篇
  1984年   39篇
  1983年   35篇
  1982年   29篇
  1981年   23篇
  1980年   25篇
  1979年   29篇
  1978年   24篇
  1977年   14篇
  1976年   17篇
  1975年   14篇
  1973年   24篇
  1968年   14篇
排序方式: 共有3895条查询结果,搜索用时 15 毫秒
991.
The S-layer-encoding genes of 21 Lactobacillus helveticus strains were characterized. Phylogenetic analysis based on the identified S-layer genes revealed two main clusters, one which includes a sequence similar to that of the slpH1 gene of L. helveticus CNRZ 892 and a second cluster which includes genes similar to that of prtY. These results were further confirmed by Southern blot hybridization. This study demonstrates S-layer gene variability in the species L. helveticus.  相似文献   
992.
Mycobacterium tuberculosis is a virulent intracellular pathogen that survives in macrophages even in the presence of an intact adaptive immune response. Type I IFNs have been shown to exacerbate tuberculosis in mice and to be associated with disease progression in infected humans. Nevertheless, the mechanisms by which type I IFNs regulate the host response to M. tuberculosis infection are poorly understood. In this study, we show that M. tuberculosis induces an IFN-related gene expression signature in infected primary human macrophages, which is dependent on host type I IFN signaling as well as the mycobacterial virulence factor, region of difference-1. We further demonstrate that type I IFNs selectively limit the production of IL-1β, a critical mediator of immunity to M. tuberculosis. This regulation occurs at the level of IL1B mRNA expression, rather than caspase-1 activation or autocrine IL-1 amplification and appears to be preferentially used by virulent mycobacteria since avirulent M. bovis bacillus Calmette-Guérin (BCG) fails to trigger significant expression of type I IFNs or release of mature IL-1β protein. The latter property is associated with decreased caspase-1-dependent IL-1β maturation in the BCG-infected macrophages. Interestingly, human monocytes in contrast to macrophages produce comparable levels of IL-1β in response to either M. tuberculosis or BCG. Taken together, these findings demonstrate that virulent and avirulent mycobacteria employ distinct pathways for regulating IL-1β production in human macrophages and reveal that in the case of M. tuberculosis infection the induction of type I IFNs is a major mechanism used for this purpose.  相似文献   
993.

Background

Anandamide (AEA) is an endogenous lipid mediator that exerts several effects in the brain as well as in peripheral tissues. These effects are mediated mainly by two types of cannabinoid receptors, named CB1R and CB2R, making AEA a prominent member of the “endocannabinoid” family. Also immune cells express CB1 and CB2 receptors, and possess the whole machinery responsible for endocannabinoid metabolism. Not surprisingly, evidence has been accumulated showing manifold roles of endocannabinoids in the modulation of the immune system. However, details of such a modulation have not yet been disclosed in primary human T-cells.

Methodology/Significance

In this investigation we used flow cytometry and ELISA tests, in order to show that AEA suppresses proliferation and release of cytokines like IL-2, TNF-α and INF-γ from activated human peripheral T-lymphocytes. However, AEA did not exert any cytotoxic effect on T-cells. The immunosuppression induced by AEA was mainly dependent on CB2R, since it could be mimicked by the CB2R selective agonist JWH-015, and could be blocked by the specific CB2R antagonist SR144528. Instead the selective CB1R agonist ACEA, or the selective CB1R antagonist SR141716, were ineffective. Furthermore, we demonstrated an unprecedented immunosuppressive effect of AEA on IL-17 production, a typical cytokine that is released from the unique CD4+ T-cell subset T-helper 17.

Conclusions/Significance

Overall, our study investigates for the first time the effects of the endocannabinoid AEA on primary human T-lymphocytes, demonstrating that it is a powerful modulator of immune cell functions. In particular, not only we clarify that CB2R mediates the immunosuppressive activity of AEA, but we are the first to describe such an immunosuppressive effect on the newly identified Th-17 cells. These findings might be of crucial importance for the rational design of new endocannabinoid-based immunotherapeutic approaches.  相似文献   
994.
Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation.  相似文献   
995.
996.
Actin polymerization-driven protrusion of the leading edge is a key element of cell motility. The important actin nucleators formins and the Arp2/3 complex are believed to have nonoverlapping functions in inducing actin filament bundles in filopodia and dendritic networks in lamellipodia, respectively. We tested this idea by investigating the role of mDia2 formin in leading-edge protrusion by loss-of-function and gain-of-function approaches. Unexpectedly, mDia2 depletion by short interfering RNA (siRNA) severely inhibited lamellipodia. Structural analysis of the actin network in the few remaining lamellipodia suggested an mDia2 role in generation of long filaments. Consistently, constitutively active mDia2 (ΔGBD-mDia2) induced accumulation of long actin filaments in lamellipodia and increased persistence of lamellipodial protrusion. Depletion of mDia2 also inhibited filopodia, whereas expression of ΔGBD-mDia2 promoted their formation. Correlative light and electron microscopy showed that ΔGBD-mDia2–induced filopodia were formed from lamellipodial network through gradual convergence of long lamellipodial filaments into bundles. Efficient filopodia induction required mDia2 targeting to the membrane, likely through a scaffolding protein Abi1. Furthermore, mDia2 and Abi1 interacted through the N-terminal regulatory sequences of mDia2 and the SH3-containing Abi1 sequences. We propose that mDia2 plays an important role in formation of lamellipodia by nucleating and/or protecting from capping lamellipodial actin filaments, which subsequently exhibit high tendency to converge into filopodia.  相似文献   
997.
The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology.  相似文献   
998.
Climate change may reduce forest growth and increase forest mortality, which is connected to high carbon costs through reductions in gross primary production and net ecosystem exchange. Yet, the spatiotemporal patterns of vulnerability to both short‐term extreme events and gradual environmental changes are quite uncertain across the species’ limits of tolerance to dryness. Such information is fundamental for defining ecologically relevant upper limits of species tolerance to drought and, hence, to predict the risk of increased forest mortality and shifts in species composition. We investigate here to what extent the impact of short‐ and long‐term environmental changes determines vulnerability to climate change of three evergreen conifers (Scots pine, silver fir, Norway spruce) and two deciduous hardwoods (European beech, sessile oak) tree species at their southernmost limits of distribution in the Mediterranean Basin. Finally, we simulated future forest growth under RCP 2.6 and 8.5 emission scenarios using a multispecies generalized linear mixed model. Our analysis provides four key insights into the patterns of species’ vulnerability to climate change. First, site climatic marginality was significantly linked to the growth trends: increasing growth was related to less climatically limited sites. Second, estimated species‐specific vulnerability did not match their a priori rank in drought tolerance: Scots pine and beech seem to be the most vulnerable species among those studied despite their contrasting physiologies. Third, adaptation to site conditions prevails over species‐specific determinism in forest response to climate change. And fourth, regional differences in forests vulnerability to climate change across the Mediterranean Basin are linked to the influence of summer atmospheric circulation patterns, which are not correctly represented in global climate models. Thus, projections of forest performance should reconsider the traditional classification of tree species in functional types and critically evaluate the fine‐scale limitations of the climate data generated by global climate models.  相似文献   
999.
Light is the primary energy source for photosynthetic organisms, but in excess, it can generate reactive oxygen species and lead to cell damage. Plants evolved multiple mechanisms to modulate light use efficiency depending on illumination intensity to thrive in a highly dynamic natural environment. One of the main mechanisms for protection from intense illumination is the dissipation of excess excitation energy as heat, a process called nonphotochemical quenching. In plants, nonphotochemical quenching induction depends on the generation of a pH gradient across thylakoid membranes and on the presence of a protein called PHOTOSYSTEM II SUBUNIT S (PSBS). Here, we generated Physcomitrella patens lines expressing histidine-tagged PSBS that were exploited to purify the native protein by affinity chromatography. The mild conditions used in the purification allowed copurifying PSBS with its interactors, which were identified by mass spectrometry analysis to be mainly photosystem II antenna proteins, such as LIGHT-HARVESTING COMPLEX B (LHCB). PSBS interaction with other proteins appears to be promiscuous and not exclusive, although the major proteins copurified with PSBS were components of the LHCII trimers (LHCB3 and LHCBM). These results provide evidence of a physical interaction between specific photosystem II light-harvesting complexes and PSBS in the thylakoids, suggesting that these subunits are major players in heat dissipation of excess energy.Photosynthetic organisms exploit sunlight energy to support their metabolism. However, if absorbed in excess, light can produce harmful reactive oxygen species (Li et al., 2009; Murchie and Niyogi, 2011). In a natural environment, light intensity is highly variable and can rapidly change from being limited to being in excess. To survive and thrive in such a variable habitat, plants evolved multiple strategies to modulate their light use efficiency to limit reactive oxygen species formation when exposed to excess illumination while maintaining the ability to harvest light efficiently when required (Li et al., 2009; Murchie and Niyogi, 2011; Ruban, 2015). Among these different protection processes, the fastest, called nonphotochemical quenching (NPQ), is activated in a few seconds after a change in illumination, and it leads to the thermal dissipation of excess absorbed energy. NPQ is a complex phenomenon with different components that are distinguished according to their activation/relaxation time scale (Demmig-Adams et al., 1996; Szabó et al., 2005; Niyogi and Truong, 2013). The primary and fastest NPQ component, called qE (for energy-quenching component) or feedback deexcitation, depends on the generation of a pH gradient across the thylakoid membranes (Niyogi and Truong, 2013). In land plants, qE activation requires the presence of a thylakoid protein called PHOTOSYSTEM II SUBUNIT S (PSBS; Li et al., 2000, 2004). The Arabidopsis (Arabidopsis thaliana) PSBS-depleted mutant psbs KO (Li et al., 2000) is unable to activate qE and also showed reduced fitness when exposed to natural light variations in the field, supporting a major role for this protein in responding to illumination intensity fluctuations (Li et al., 2000; Külheim et al., 2002). Mutational analyses showed that the PSBS role in qE strictly depends on the presence of two protonable Glu residues, which are most likely involved in sensing the pH decrease in the lumen (Li et al., 2004). Despite several studies, however, the precise molecular mechanism by which PSBS controls NPQ induction remains debatable, and contrasting hypotheses have been presented (for review, see Ruban et al., 2012). PSBS has been hypothesized to bind pigments and to be directly responsible for energy dissipation based on its sequence similarity with LIGHT HARVESTING COMPLEX (LHC) proteins (Li et al., 2000; Aspinall-O’Dea et al., 2002). An alternative hypothesis instead suggested that PSBS is unable to bind pigments (Funk et al., 1995; Crouchman et al., 2006; Bonente et al., 2008a) and that it plays an indirect role in NPQ by modulating the PSII antenna protein transition from light harvesting to an energy dissipative state (Betterle et al., 2009; Johnson et al., 2011). This transition has been suggested to depend on the control of the macroorganization of the PSII-LHCII supercomplexes that are present in the grana membranes (Kiss et al., 2008; Betterle et al., 2009; Kereïche et al., 2010; Johnson et al., 2011). Consistent with this hypothesis, it was recently demonstrated that PSBS is able to induce a dissipative state in isolated LHCII proteins in liposomes (Wilk et al., 2013), suggesting that its interactions with antenna proteins play a key role in its biological activity. However, the precise identity of PSBS interactors (Teardo et al., 2007; Betterle et al., 2009), the PSBS oligomerization state (Bergantino et al., 2003), and its localization within PSII supercomplexes (Nield et al., 2000; Haniewicz et al., 2013) remain unclear or at least controversial, limiting the current understanding of PSBS molecular mechanisms.The moss Physcomitrella patens has recently emerged as a valuable model organism in which to study NPQ. As in the model angiosperm Arabidopsis, PSBS accumulation modulates NPQ amplitude and protects plants from photoinhibition under strong light in P. patens (Li et al., 2000; Alboresi et al., 2010; Zia et al., 2011; Gerotto et al., 2012). PSBS-mediated NPQ in P. patens also showed zeaxanthin dependence as in other plants (Niyogi et al., 1998; Pinnola et al., 2013). The moss P. patens has another protein involved in NPQ, LHCSR, which is typically found in algae and is different from proteins found in vascular plants (Peers et al., 2009; Bailleul et al., 2010; Gerotto and Morosinotto, 2013). Even if LHCSR is present in P. patens, LHCSR- and PSBS-dependent NPQ mechanisms were shown to be independent and to have an additive effect without any significant functional synergy (Gerotto et al., 2012).Previous data also demonstrated the possibility of achieving strong overexpression of PSBS in P. patens (Gerotto et al., 2012), which, however, was never observed in Arabidopsis (Li et al., 2002). This property was exploited in this work to overexpress a His-tagged PSBS isoform, which was afterward purified in its native state from dark-adapted thylakoid membranes. Several PSII antenna proteins were copurified with PSBS and identified by mass spectrometry analyses, demonstrating that they interact physically in dark-adapted thylakoid membranes. Components of LHCII trimers (LHCB3 and LHCBM) appear to be major, but not exclusive, components of PSBS interactors.  相似文献   
1000.
Abstract: In this work with ab initio computations, we describe relevant interactions between protein active sites and ligands, using as a test case arthropod hemocyanins. A computational analysis of models corresponding to the oxygenated and deoxygenated forms of the hemocyanin active site is performed using the Density Functional Theory approach. We characterize the electron density distribution of the binding site with and without bound oxygen in relation to the geometry, which stems out of the crystals of three hemocyanin proteins, namely the oxygenated form from the horseshoe crab Limulus polyphemus, and the deoxygenated forms, respectively, from the same source and from another arthropod, the spiny lobster Panulirus interruptus. Comparison of the three available crystals indicate structural differences at the oxygen binding site, which cannot be explained only by the presence and absence of the oxygen ligand, since the geometry of the ligand site of the deoxygenated Panulirus hemocyanin is rather similar to that of the oxygenated Limulus protein. This finding was interpreted in the frame of a mechanism of allosteric regulation for oxygen binding. However, the cooperative mechanism, which is experimentally well documented, is only partially supported by crystallographic data, since no oxygenated crystal of Panulirus hemocyanin is presently available. We address the following question: is the local ligand geometry responsible for the difference of the dicopper distance observed in the two deoxygenated forms of hemocyanin or is it necessary to advocate the allosteric regulation of the active site conformations in order to reconcile the different crystal forms? We find that the difference of the dicopper distance between the two deoxygenated hemocyanins is not due to the small differences of ligand geometry found in the crystals and conclude that it must be therefore stabilized by the whole protein tertiary structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号