首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1194篇
  免费   141篇
  1335篇
  2023年   5篇
  2022年   9篇
  2021年   12篇
  2020年   18篇
  2019年   21篇
  2018年   36篇
  2017年   32篇
  2016年   31篇
  2015年   59篇
  2014年   49篇
  2013年   89篇
  2012年   93篇
  2011年   60篇
  2010年   57篇
  2009年   27篇
  2008年   58篇
  2007年   69篇
  2006年   49篇
  2005年   53篇
  2004年   43篇
  2003年   46篇
  2002年   46篇
  2001年   35篇
  2000年   29篇
  1999年   30篇
  1998年   11篇
  1997年   18篇
  1996年   6篇
  1995年   9篇
  1994年   9篇
  1993年   6篇
  1992年   21篇
  1991年   17篇
  1990年   18篇
  1989年   16篇
  1988年   13篇
  1987年   10篇
  1986年   11篇
  1985年   11篇
  1984年   10篇
  1983年   14篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1977年   8篇
  1974年   5篇
  1973年   8篇
  1972年   4篇
  1968年   8篇
  1964年   5篇
排序方式: 共有1335条查询结果,搜索用时 15 毫秒
91.
Environmental oxygen availability may play an important role in the evolution of polar marine organisms, as suggested by the physiological and biochemical strategies adopted by these organisms to acquire, deliver and scavenge oxygen. Stress conditions such as extreme temperatures increase the production of reactive oxygen species (ROS) in cells. Thus, in order to prevent cellular damage, adjustments in antioxidant defences are needed to maintain the steady-state concentration of ROS. Cold-adapted bacteria are generally acknowledged to achieve their physiological and ecological success in cold environments through structural and functional properties developed in their genomes. A short overview on the molecular adaptations of polar bacteria and in particular on the biological function of oxygen-binding proteins in Pseudoalteromonas haloplanktis TAC125, selected as a model, will be provided together with the role of oxygen and oxidative/nitrosative stress in regulating adaptive responses at cellular and molecular levels.  相似文献   
92.
93.
Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces) during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312) across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force predictions could be affected by an uncertainty in the same order of magnitude of its value, although this condition has low probability to occur.  相似文献   
94.

Corpus callosum trauma has long been implicated in mild traumatic brain injury (mTBI), yet the mechanism by which forces penetrate this structure is unknown. We investigated the hypothesis that coronal and horizontal rotations produce motion of the falx cerebri that damages the corpus callosum. We analyzed previously published head kinematics of 115 sports impacts (2 diagnosed mTBI) measured with instrumented mouthguards and used finite element (FE) simulations to correlate falx displacement with corpus callosum deformation. Peak coronal accelerations were larger in impacts with mTBI (8592 rad/s2 avg.) than those without (1412 rad/s2 avg.). From FE simulations, coronal acceleration was strongly correlated with deep lateral motion of the falx center (r = 0.85), while horizontal acceleration was correlated with deep lateral motion of the falx periphery (r > 0.78). Larger lateral displacement at the falx center and periphery was correlated with higher tract-oriented strains in the corpus callosum body (r = 0.91) and genu/splenium (r > 0.72), respectively. The relationship between the corpus callosum and falx was unique: removing the falx from the FE model halved peak strains in the corpus callosum from 35% to 17%. Consistent with model results, we found indications of corpus callosum trauma in diffusion tensor imaging of the mTBI athletes. For a measured alteration of consciousness, depressed fractional anisotropy and increased mean diffusivity indicated possible damage to the mid-posterior corpus callosum. Our results suggest that the corpus callosum may be sensitive to coronal and horizontal rotations because they drive lateral motion of a relatively stiff membrane, the falx, in the direction of commissural fibers below.

  相似文献   
95.
The 98 amino acid (a.a.) N-terminus of the 126 a.a. atrial natriuretic factor prohormone contains two natriuretic and vasodilatory peptides consisting of a.a. 1-30 (proANF 1-30) and a.a. 31-67 (proANF 31-67). The N-terminus and C-terminus (a.a. 99-126, i.e., ANF--also a vasodilatory peptide) circulate normally in humans with a circadian peak at 04:00 h in plasma. To determine if the N-terminus and C-terminus of the ANF prohormone are present in urine and possibly have a circadian variation in urine, six healthy volunteers had urine samples hourly while awake and every 3 h during sleep for five consecutive days obtained for radioimmunoassay. The sleep-awake pattern was varied so that after 2 days of normal sleep (supine)-awake (upright) positions, these volunteers were supine from 15:00 h on the third day until 10:00 h of the fourth day. They were then upright until 19:00 h that day when they became supine again until 02:30 h, and then were upright until 10:00 h of day 5. Three radioimmunoassays that immunologically recognize (a) the whole N-terminus (i.e., amino acids 1-98), (b) the midportion of the N-terminus (amino acids 31-67), and (c) the C-terminus of the ANF prohormone were utilized. ProANF 1-98, proANF 31-67, and the ANF radioimmunoassays each detected their respective peptides in urine. A circadian peak for each of these peptides was detected at 04:00 to 05:00 h whether the person was supine or upright during the night, which were significantly (p less than 0.001) higher than their concentrations in the afternoon of the previous days. Assuming a supine position during the day caused a significant (p less than 0.01) two- to threefold increase in these peptides in the urine. Food intake also increased the concentrations of proANF 1-98, proANF 31-67, and ANF in urine (p less than 0.001). Fluid intake when abstaining from food throughout the day lowered the concentration of these peptides in the urine. It was concluded that there is a circadian rhythm in both the N-terminus and C-terminus of the ANF prohormone excretion into urine with a peak at 04:00 h irrespective of posture, but that both posture and food and fluid intake throughout the day significantly influence the excretion of these peptides into the urine, with supine posture and food increasing their concentrations in the urine while fluid intake decreases their concentrations in the urine.  相似文献   
96.
97.
98.
99.
100.
The chlorate-resistant (chlR) mutants are pleiotropically defective in molybdoenzyme activity. The inactive derivative of the molybdoenzyme, respiratory nitrate reductase, present in the cell-free extract of a chlB mutant, can be activated by the addition of protein FA, the probable active product of the chlB locus. Protein FA addition, however, cannot bring about the activation if 10 mM sodium tungstate is included in the culture medium for the chlB strain. The inclusion of a heat-treated preparation of a wild-type or chlB strain prepared after growth in the absence of tungstate, restores the protein-FA-dependent activation of nitrate reductase. All attempts to activate nitrate reductase in extracts prepared from tungstate-grown wild-type Escherichia coli strains failed. It appears that during growth with tungstate, the possession of the active chlB gene product leads to the synthesis of a nitrate reductase derivative which is distinct from that present in the tungstate-grown chlB mutant. Heat-treated preparations from chlA and chlE mutants which do not possess molybdenum cofactor activity fail to restore the activation. Fractionation by gel filtration of the heat-treated preparation from a wild-type strain produced two active peaks in the eluate of approximate Mr 12000 and less than or equal to 1500. The active material in the heat-treated extract was resistant to exposure to proteinases, but after such treatment the active component, previously of approximate Mr 12000, eluted from the gel filtration column with the material of Mr less than or equal to 1500. The active material is therefore of low molecular mass and can exist either in a protein-bound form or in an apparently free state. Molybdenum cofactor activity, assayed by the complementation of the apoprotein of NADPH:nitrate oxidoreductase in an extract of the nit-1 mutant of Neurospora crassa, gave a profile following gel filtration similar to that of the ability to restore respiratory nitrate reductase activity to the tungstate-grown chlB mutant soluble fraction. This was the case even after proteinase treatment of the heat-stable fraction. Analysis of the chlC (narC) mutant, defective in the structural gene for nitrate reductase, revealed that heat treatment is not necessary for the expression of the active component. Furthermore both the active component and molybdenum cofactor activity are present in corresponding bound and free fractions in the non-heat-treated soluble subcellular fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号