首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   121篇
  2022年   7篇
  2021年   15篇
  2020年   5篇
  2019年   10篇
  2018年   8篇
  2017年   9篇
  2016年   11篇
  2015年   36篇
  2014年   31篇
  2013年   27篇
  2012年   63篇
  2011年   50篇
  2010年   33篇
  2009年   24篇
  2008年   40篇
  2007年   41篇
  2006年   32篇
  2005年   33篇
  2004年   47篇
  2003年   38篇
  2002年   39篇
  2001年   28篇
  2000年   11篇
  1999年   7篇
  1998年   9篇
  1997年   6篇
  1996年   5篇
  1995年   7篇
  1994年   6篇
  1993年   7篇
  1992年   12篇
  1991年   15篇
  1990年   15篇
  1989年   7篇
  1988年   10篇
  1987年   12篇
  1986年   10篇
  1985年   13篇
  1984年   15篇
  1983年   10篇
  1982年   10篇
  1981年   4篇
  1980年   5篇
  1979年   7篇
  1978年   6篇
  1976年   7篇
  1975年   6篇
  1972年   5篇
  1968年   5篇
  1967年   5篇
排序方式: 共有890条查询结果,搜索用时 15 毫秒
151.
The currently accepted paradigm for the primary T cell response is that effector T cells commit to autonomous developmental programs. This concept is based on several experiments that have demonstrated that the dynamics of a T cell response is largely determined shortly after antigen exposure and that T cell dynamics do not depend on the level and duration of antigen stimulation. Another experimental study has also shown that T cell responses are robust to variations in antigen-specific precursor frequency.  相似文献   
152.
The major function of the Haptoglobin (Hp) protein is to control trafficking of extracorpuscular hemoglobin (Hb) thru the macrophage CD163 receptor with degradation of the Hb in the lysosome. There is a common copy number polymorphism in the Hp gene (Hp 2 allele) that has been associated with a severalfold increased incidence of atherothrombosis in multiple longitudinal studies. Increased plaque oxidation and apoptotic markers have been observed in Hp 2-2 atherosclerotic plaques, but the mechanism responsible for this finding has not been determined. We proposed that the increased oxidative injury in Hp 2-2 plaques is due to an impaired processing of Hp 2-2-Hb complexes within macrophage lysosomes, thereby resulting in redox active iron accumulation, lysosomal membrane oxidative injury, and macrophage apoptosis. We sought to test this hypothesis in vitro using purified Hp-Hb complex and cells genetically manipulated to express CD163. CD163-mediated endocytosis and lysosomal degradation of Hp-Hb were decreased for Hp 2-2-Hb complexes. Confocal microscopy using lysotropic pH indicator dyes demonstrated that uptake of Hp 2-2-Hb complexes disrupted the lysosomal pH gradient. Cellular fractionation studies of lysosomes isolated from macrophages incubated with Hp 2-2-Hb complexes demonstrated increased lysosomal membrane oxidation and a loss of lysosomal membrane integrity leading to lysosomal enzyme leakage into the cytoplasm. Additionally, markers of apoptosis, DNA fragmentation, and active caspase 3 were increased in macrophages that had endocytosed Hp 2-2-Hb complexes. These data provide novel mechanistic insights into how the Hp genotype regulates lysosomal oxidative stress within macrophages after receptor-mediated endocytosis of Hb.  相似文献   
153.
We have hypothesized that ligand-induced binding sites (LIBS), i.e. sites expressed on cell surface receptors only after ligand binding causes the receptor to change shape, mediate subsequent biological events. To test this hypothesis, we have raised monoclonal antibodies that preferentially react with an integrin (platelet glycoprotein (GP) IIb-IIIa) after it bind Arg-Gly-Asp-containing ligands. The 13 anti-LIBS antibodies obtained define at least three distinct GPIIb-IIIa epitopes; one of these epitopes is also expressed following occupancy of another integrin, the vitronectin receptor. Certain of these LIBSs appear to mediate functions, since the antibodies that define them inhibit GPIIb-IIIa-mediated fibrin clot contraction or platelet adhesion to collagen. Nevertheless, none of the anti-LIBS antibodies inhibit binding of the primary ligand, fibrinogen. These data indicate that LIBS may mediate distinct consequences of receptor occupancy.  相似文献   
154.
155.
The insulin receptor of the turkey erythrocyte has previously been shown to be very similar to that of the mammalian insulin receptors. As a first step in the isolation of this receptor a highly purified plasma membrane fraction has been prepared. The binding characteristics of the purified membrane-bound receptor were identical to those found with intact erythrocytes, but the membrane preparation had very little insulin-degrading activity. Isolation of the membrane by the methods described gave a 100-fold purification of the insulin receptor with 67% yield.  相似文献   
156.
Li and Mn‐rich layered oxides, xLi2MnO3·(1–x)LiMO2 (M=Ni, Mn, Co), are promising cathode materials for Li‐ion batteries because of their high specific capacity that can exceed 250 mA h g?1. However, these materials suffer from high 1st cycle irreversible capacity, gradual capacity fading, low rate capability, a substantial charge‐discharge voltage hysteresis, and a large average discharge voltage decay during cycling. The latter detrimental phenomenon is ascribed to irreversible structural transformations upon cycling of these cathodes related to potentials ≥4.5 V required for their charging. Transition metal inactivation along with impedance increase and partial layered‐to‐spinel transformation during cycling are possible reasons for the detrimental voltage fade. Doping of Li, Mn‐rich materials by Na, Mg, Al, Fe, Co, Ru, etc. is useful for stabilizing capacity and mitigating the discharge‐voltage decay of xLi2MnO3·(1–x)LiMO2 electrodes. Surface modifications by thin coatings of Al2O3, V2O5, AlF3, AlPO4, etc. or by gas treatment (for instance, by NH3) can also enhance voltage and capacity stability during cycling. This paper describes the recent literature results and ongoing efforts from our groups to improve the performance of Li, Mn‐rich materials. Focus is also on preparation of cobalt‐free cathodes, which are integrated layered‐spinel materials with high reversible capacity and stable performance.  相似文献   
157.
158.
Synthesis In Vitro of Type 5 Adenovirus Capsid Proteins   总被引:8,自引:7,他引:1       下载免费PDF全文
Reaction mixtures containing cytoplasmic extracts and ribosomal fractions prepared from KB cells infected with type 5 adenovirus were able to carry out incorporation of amino acids into protein. The in vitro product included proteins which reacted specifically with antisera to adenovirus capsid proteins; in control experiments with extracts from uninfected cells, no reactions with the antisera were found. The viral proteins were synthesized in vitro on small polyribosomes, were released from them, and significant numbers of the free polypeptides were assembled in vitro into multimeric adenovirus capsid structures.  相似文献   
159.
Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo. In vitro methodologies provide valuable complementary information on protein–DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein–DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein–DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein–DNA binding.  相似文献   
160.
Li‐rich electrode materials of the family x Li2MnO3·(1?x )LiNia Cob Mnc O2 (a + b + c = 1) suffer a voltage fade upon cycling that limits their utilization in commercial batteries despite their extremely high discharge capacity, ≈250 mA h g?1. Li‐rich, 0.35Li2MnO3·0.65LiNi0.35Mn0.45Co0.20O2, is exposed to NH3 at 400 °C, producing materials with improved characteristics: enhanced electrode capacity and a limited average voltage fade during 100 cycles in half cells versus Li. Three main changes caused by NH3 treatment are established. First, a general bulk reduction of Co and Mn is observed via X‐ray photoelectron spectroscopy and X‐ray absorption near edge structure. Next, a structural rearrangement lowers the coordination number of Co? O and Mn? O bonds, as well as formation of a surface spinel‐like structure. Additionally, Li+ removal from the bulk causes the formation of surface LiOH, Li2CO3, and Li2O. These structural and surface changes can enhance the voltage and capacity stability of the Li‐rich material electrodes after moderate NH3 treatment times of 1–2 h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号