全文获取类型
收费全文 | 981篇 |
免费 | 88篇 |
专业分类
1069篇 |
出版年
2024年 | 1篇 |
2023年 | 8篇 |
2022年 | 17篇 |
2021年 | 31篇 |
2020年 | 14篇 |
2019年 | 17篇 |
2018年 | 23篇 |
2017年 | 25篇 |
2016年 | 44篇 |
2015年 | 55篇 |
2014年 | 58篇 |
2013年 | 65篇 |
2012年 | 84篇 |
2011年 | 74篇 |
2010年 | 38篇 |
2009年 | 44篇 |
2008年 | 52篇 |
2007年 | 71篇 |
2006年 | 64篇 |
2005年 | 58篇 |
2004年 | 43篇 |
2003年 | 49篇 |
2002年 | 52篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 8篇 |
1998年 | 8篇 |
1997年 | 5篇 |
1996年 | 5篇 |
1995年 | 1篇 |
1994年 | 8篇 |
1993年 | 6篇 |
1992年 | 7篇 |
1991年 | 6篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1975年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
1958年 | 1篇 |
排序方式: 共有1069条查询结果,搜索用时 15 毫秒
101.
Ethanol exposure during fetal development is a leading cause of long-term cognitive impairments. Studies suggest that ethanol exposure have deleterious effects on the hippocampus, a brain region that is important for learning and memory. Ethanol exerts its effects, in part, via alterations in glutamatergic neurotransmission, which is critical for the maturation of neuronal circuits during development. The current literature strongly supports the growing evidence that ethanol inhibits glutamate release in the neonatal CA1 hippocampal region. However, the exact molecular mechanism responsible for this effect is not well understood. In this study, we show that ethanol enhances endocannabinoid (EC) levels in cultured hippocampal neurons, possibly through calcium pathways. Acute ethanol depresses miniature post-synaptic current (mEPSC) frequencies without affecting their amplitude. This suggests that ethanol inhibits glutamate release. The CB1 receptors (CB1Rs) present on pre-synaptic neurons are not altered by acute ethanol. The CB1R antagonist SR 141716A reverses ethanol-induced depression of mEPSC frequency. Drugs that are known to enhance the in vivo function of ECs occlude ethanol effects on mEPSC frequency. Chelation of post-synaptic calcium by EGTA antagonizes ethanol-induced depression of mEPSC frequency. The activation of CB1R with the selective agonist WIN55,212-2 also suppresses the mEPSC frequency. This WIN55,212-2 effect is similar to the ethanol effects and is reversed by SR141716A. In addition, tetani-induced excitatory post-synaptic currents (EPSCs) are depressed by acute ethanol. SR141716A significantly reverses ethanol effects on evoked EPSC amplitude in a dual recording preparation. These observations, taken together, suggest the participation of ECs as retrograde messengers in the ethanol-induced depression of synaptic activities. 相似文献
102.
Robert P. Gersch Arif Kirmizitas Lidia Sobkow Gina Sorrentino Gerald H. Thomsen Michael Hadjiargyrou 《Gene expression patterns : GEP》2012,12(3-4):145-153
Mustn1 is a vertebrate-specific protein that, in vitro, was showed to be essential for prechondrocyte function and thus it has the potential to regulate chondrogenesis during embryonic development. We use Xenopus laevis as a model to examine Mustn1 involvement in chondrogenesis. Previous work suggests that Mustn1 is necessary but not sufficient for chondrogenic proliferation and differentiation, as well as myogenic differentiation in vitro. Mustn1 was quantified and localized in developing Xenopus embryos using RT-PCR and whole mount in situ hybridization. Xenopus embryos were injected with either control morpholinos (Co-MO) or one designed against Mustn1 (Mustn1-MO) at the four cell stage. Embryos were scored for morphological defects and Sox9 was visualized via in situ hybridization. Finally, Mustn1-MO-injected embryos were co-injected with Mustn1-MO resistant mRNA to confirm the specificity of the observed phenotype. Mustn1 is expressed from the mid-neurula stage to the swimming tadpole stages, predominantly in anterior structures including the pharyngeal arches and associated craniofacial tissues, and the developing somites. Targeted knockdown of Mustn1 in craniofacial and dorsal axial tissues resulted in phenotypes characterized by small or absent eye(s), a shortened body axis, and tail kinks. Further, Mustn1 knockdown reduced cranial Sox9 mRNA expression and resulted in the loss of differentiated cartilaginous head structures (e.g. ceratohyal and pharyngeal arches). Reintroduction of MO-resistant Mustn1 mRNA rescued these effects. We conclude that Mustn1 is necessary for normal craniofacial cartilage development in vivo, although the exact molecular mechanism remains unknown. 相似文献
103.
Andrew C. Alba Shawnlei Breeding Annie J. Valuska Christy Sky Megan Dunn Paul J. Schutz Katherine A. Leighty Gina M. Ferrie 《Zoo biology》2019,38(6):498-507
The use of radio frequency identification (RFID) technology is common in animal‐monitoring applications in the wild and in zoological and agricultural settings. RFID is used to track animals and to collect information about movements and other behaviors, as well as to automate or improve husbandry. Disney's Animal Kingdom® uses passive RFID technology to monitor nest usage by a breeding colony of northern carmine bee‐eaters. We implemented RFID technologies in various equipment configurations, initially deploying low‐frequency (LF) 125 kHz RFID and later changing to high‐frequency (HF) 13.56 MHz RFID technology, to monitor breeding behavior in the flock. We installed antennas connected to RFID readers at the entrances of nest tunnels to detect RFID transponders attached to leg bands as birds entered and exited tunnels. Both LF‐RFID and HF‐RFID systems allowed the characterization of nest visitation, including the timing of nest activity, breeding pair formation, identification of egg‐laying females, participation by nonresidents, and detection of nest disruptions. However, we collected a substantially larger volume of data using the increased bandwidth and polling speed inherent with HF‐RFID, which permitted tag capture of multiple birds simultaneously and resulted in fewer missed nest visits in comparison to LF‐RFID. Herein, we describe the evolution of the RFID setups used to monitor nest usage for more than 7 years, the types of data that can be gained using RFID at nests, and how we used these data to gain insights into carmine bee‐eater breeding behavior and improve husbandry. 相似文献
104.
Here we describe the initial functional characterization of a cyclic nucleotide regulated ion channel from the bacterium Mesorhizobium loti and present two structures of its cyclic nucleotide binding domain, with and without cAMP. The domains are organized as dimers with the interface formed by the linker regions that connect the nucleotide binding pocket to the pore domain. Together, structural and functional data suggest the domains form two dimers on the cytoplasmic face of the channel. We propose a model for gating in which ligand binding alters the structural relationship within a dimer, directly affecting the position of the adjacent transmembrane helices. 相似文献
105.
Homeostatic plasticity in the developing nervous system 总被引:1,自引:0,他引:1
106.
The aim of the present study was to identify and characterize hemispheric lateralization for pain intensity perception. A sample of 351 healthy volunteers was tested by the immersion of the right hand for 10 s followed by the same test for the left hand (RL group; n = 199) or in a random sequence (RND group; n = 152) into a water bath (48 degrees C, 15 s). Pain intensity was self-reported by the Visual Analogue Scale (VAS). The motor hemispherical Lateralization Index (LI) was obtained by the Edinburgh Inventory. Gender, hand skin fold, interstimulus time and menstrual cycle data in case of female subjects were recorded. The sample, 60.7% females and 39.3% males, 20.4 +/- 0.18 (mean +/- SEM) years old, showed 92.1% right-handed subjects. Left hand VAS was significantly higher than right hand VAS for RL (7.24 +/- 1.31 vs 6.74 +/- 1.52; p < 0.01) and RND (7.24 +/- 0.82 vs 6.73 +/- 1.25; p < 0.01) both for right- and left-handed subjects. A low but significant correlation for VAS scores and LI was found (r = 0.14; p < 0.05 or r = 0.18; p < 0.05, for left or right hand, respectively). Skin fold was statistically similar in both hands (p > 0.05) being highly correlated with each other (r = 0.68; p < 0.05). Pain subjective perception was not correlated to interstimulus time (r = -0.01; p > 0.05). Females showed significantly higher values than males for both left and right hand VAS scores. Periovulatory phase VAS value was significantly higher than luteal phase VAS only for the right hand test (7.57 +/- 0.20 vs 6.47 +/- 0.33; p < 0.01). The results of the present study suggest a lateralization of pain intensity perception to the right hemisphere not correlated with the motor hemispheric lateralization. 相似文献
107.
Eiko Kawamura Gina B. Hamilton Ewa I. Miskiewicz Daniel J. MacPhee 《BMC developmental biology》2018,18(1):19
Background
Integrins are transmembrane receptors that mediate cell–extracellular matrix (ECM) and cell-cell adhesion and trophoblast cells undergo changes in integrin expression as they differentiate. However, the mechanism(s) of integrin activation leading to integrin-mediated signaling in trophoblast cell differentiation is unknown. The Fermitin family proteins are integrin activators that help mediate integrin-mediated signaling, but have never been studied in detail within the human placenta. Thus, we examined the spatiotemporal pattern of expression of Fermitin family homolog-2 (FERMT2) in human chorionic villi throughout gestation and its role in trophoblast-substrate adhesion and invasion.Methods
Placental villous tissue was obtained from patients undergoing elective terminations by dilatation and curettage at weeks 8–12 (n =?10), weeks 13–14 (n =?8), as well as from term deliveries at weeks 37–40 (n =?6). Tissues were fixed, processed and sections utilized for immunofluorescence analysis of FERMT2 expression during gestation. Additionally, HTR8-SVneo human trophoblast cells were transfected by electroporation with FERMT2-specific siRNAs or non-targeting siRNAs (control) and used in cell-substrate adhesion as well as invasion assays.Results
FERMT2 was more commonly expressed in the basal domain of villous cytotrophoblast cells and prominently localized around the periphery of individual extravillous trophoblast cells. siRNA-mediated knockdown of FERMT2 in HTR8-SVneo cells resulted in significantly decreased trophoblast-substrate attachment (p <?0.05) as well as significantly decreased trophoblast invasion (p?<?0.05) relative to control cells.Conclusions
The detection of FERMT2 throughout extravillous trophoblast columns and the results of invasion assays demonstrated that this protein is likely an important regulator of integrin activation in extravillous cells to modulate migration and invasion.108.
Three distinct microsporidia were identified from parasitic copepods in the northeast Pacific Ocean. Sequencing and phylogenetic analysis of a partial small subunit ribosomal RNA gene (SSU rDNA) sequence identified a genetically distinct variety of Desmozoon lepeophtherii from Lepeophtheirus salmonis on cultured Atlantic salmon Salmo salar, and this was confirmed by transmission electron microscopy. Phylogenetic analysis resolved the SSU rDNA sequence of the second organism in a unique lineage that was most similar to microsporidia from marine and brackish water crustaceans. The second occurred in L. salmonis on Atlantic, sockeye Oncorhynchus nerka, chum O. keta and coho O. kisutch salmon, in Lepeophtheirus cuneifer on Atlantic salmon, and in Lepeophtheirus parviventris on Irish Lord Hemilepidotus hemilepidotus. Replication occurred by binary fission during merogony and sporogony, diplokarya were not present, and all stages were in contact with host cell cytoplasm. This parasite was identified as Facilispora margolisi n. g., n. sp. and accommodated within a new family, the Facilisporidae n. fam. The third, from Lepeophtheirus hospitalis on starry flounder Platichthys stellatus, was recognized only from its unique, but clearly microsporidian SSU rDNA sequence. Phylogenetic analysis placed this organism within the clade of microsporidia from crustaceans. 相似文献
109.
Identification of a novel human granzyme B inhibitor secreted by cultured sertoli cells 总被引:3,自引:0,他引:3
Sipione S Simmen KC Lord SJ Motyka B Ewen C Shostak I Rayat GR Dufour JM Korbutt GS Rajotte RV Bleackley RC 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(8):5051-5058
Sertoli cells have long since been recognized for their ability to suppress the immune system and protect themselves as well as other cell types from harmful immune reaction. However, the exact mechanism or product produced by Sertoli cells that affords this immunoprotection has never been fully elucidated. We examined the effect of mouse Sertoli cell-conditioned medium on human granzyme B-mediated killing and found that there was an inhibitory effect. We subsequently found that a factor secreted by Sertoli cells inhibited killing through the inhibition of granzyme B enzymatic activity. SDS-PAGE analysis revealed that this factor formed an SDS-insoluble complex with granzyme B. Immunoprecipitation and mass spectroscopic analysis of the complex identified a proteinase inhibitor, serpina3n, as a novel inhibitor of human granzyme B. We cloned serpina3n cDNA, expressed it in Jurkat cells, and confirmed its inhibitory action on granzyme B activity. Our studies have led to the discovery of a new inhibitor of granzyme B and have uncovered a new mechanism used by Sertoli cells for immunoprotection. 相似文献
110.