首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3179篇
  免费   362篇
  2022年   22篇
  2021年   42篇
  2020年   23篇
  2019年   25篇
  2018年   30篇
  2017年   44篇
  2016年   78篇
  2015年   125篇
  2014年   123篇
  2013年   152篇
  2012年   220篇
  2011年   202篇
  2010年   127篇
  2009年   109篇
  2008年   163篇
  2007年   161篇
  2006年   132篇
  2005年   122篇
  2004年   131篇
  2003年   132篇
  2002年   136篇
  2001年   68篇
  2000年   62篇
  1999年   60篇
  1998年   42篇
  1997年   39篇
  1996年   43篇
  1995年   31篇
  1994年   27篇
  1993年   34篇
  1992年   53篇
  1991年   51篇
  1990年   50篇
  1989年   48篇
  1988年   48篇
  1987年   46篇
  1986年   37篇
  1985年   44篇
  1984年   37篇
  1983年   31篇
  1982年   28篇
  1981年   19篇
  1980年   30篇
  1979年   29篇
  1978年   23篇
  1976年   20篇
  1975年   30篇
  1973年   23篇
  1970年   18篇
  1968年   24篇
排序方式: 共有3541条查询结果,搜索用时 15 毫秒
171.
In this study we investigated the commonality and biosynthesis of the O-methyl phosphoramidate (MeOPN) group found on the capsular polysaccharide (CPS) of Campylobacter jejuni. High resolution magic angle spinning NMR spectroscopy was used as a rapid, high throughput means to examine multiple isolates, analyze the cecal contents of colonized chickens, and screen a library of CPS mutants for the presence of MeOPN. Sixty eight percent of C. jejuni strains were found to express the MeOPN with a high prevalence among isolates from enteritis, Guillain Barré, and Miller-Fisher syndrome patients. In contrast, MeOPN was not observed for any of the Campylobacter coli strains examined. The MeOPN was detected on C. jejuni retrieved from cecal contents of colonized chickens demonstrating that the modification is expressed by bacteria inhabiting the avian gastrointestinal tract. In C. jejuni 11168H, the cj1415-cj1418 cluster was shown to be involved in the biosynthesis of MeOPN. Genetic complementation studies and NMR/mass spectrometric analyses of CPS from this strain also revealed that cj1421 and cj1422 encode MeOPN transferases. Cj1421 adds the MeOPN to C-3 of the beta-d-GalfNAc residue, whereas Cj1422 transfers the MeOPN to C-4 of D-glycero-alpha-L-gluco-heptopyranose. CPS produced by the 11168H strain was found to be extensively modified with variable MeOPN, methyl, ethanolamine, and N-glycerol groups. These findings establish the importance of the MeOPN as a diagnostic marker and therapeutic target for C. jejuni and set the groundwork for future studies aimed at the detailed elucidation of the MeOPN biosynthetic pathway.  相似文献   
172.
CD23 is a type II transmembrane glycoprotein synthesized by hematopoietic cells that has biological activity in both membrane-bound and freely soluble forms, acting via a number of receptors, including integrins. We demonstrate here that soluble CD23 (sCD23) sustains growth of human B cell precursors via an RGD-independent interaction with the alphavbeta5 integrin. The integrin recognizes a tripeptide motif in a small disulfide-bonded loop at the N terminus of the lectin head region of CD23, centered around Arg(172), Lys(173), and Cys(174) (RKC). This RKC motif is present in all forms of sCD23 with cytokine-like activity, and cytokine activity is independent of the lectin head, an "inverse RGD" motif, and the CD21 and IgE binding sites. RKC-containing peptides derived from this region of CD23 bind alphavbeta5 and are biologically active. The binding and activity of these peptides is unaffected by inclusion of a short peptide containing the classic RGD sequence recognized by integrins, and, in far-Western analyses, RKC-containing peptides bind to the beta subunit of the alphavbeta5 integrin. The interaction between alphavbeta5 and sCD23 indicates that integrins deliver to cells important signals initiated by soluble ligands without the requirement for interactions with RGD motifs in their common ligands. This mode of integrin signaling may not be restricted to alphavbeta5.  相似文献   
173.
Objective: Abdominal visceral (VAT) and subcutaneous adipose tissue (SAT) display significant metabolic differences, with VAT showing a functional association to metabolic/cardiovascular disorders. A third abdominal adipose layer, derived by the division of SAT and identified as deep subcutaneous adipose tissue (dSAT), may play a significant and independent metabolic role. The aim of this study was to evaluate depot‐specific differences in the expression of proteins key to adipocyte metabolism in a lean population to establish a potential physiologic role for dSAT. Research Methods and Procedures: Adipocytes and preadipocytes were isolated from whole biopsies taken from superficial SAT (sSAT), dSAT, and VAT samples obtained from 10 healthy normal weight patients (7 women and 3 men), with a mean age of 56.4 ± 4.04 years and a mean BMI of 23.1 ± 0.5 kg/m2. Samples were evaluated for depot‐specific differences in insulin sensitivity using adiponectin, glucose transport protein 4 (GLUT4), and resistin mRNA and protein expression, glucocorticoid metabolism by 11β‐hydroxysteroid dehydrogenase type‐1 (11β‐HSD1) expression, and alterations in the adipokines leptin and tumor necrosis factor‐α (TNF‐α). Results: Although no regional differences in expression were observed for adiponectin or TNF‐α, dSAT whole biopsies and adipocytes, while intermediary to both sSAT and VAT, reflected more of the VAT expression profile of 11β‐HSD1, leptin, and resistin. Only in the case of the intracellular pool of GLUT4 proteins in whole biopsies was an independent pattern of expression observed for dSAT. In an evaluation of the homeostatic model, dSAT 11β‐HSD1 protein (r = 0.9573, p = 0.0002) and TNF‐α mRNA (r = 0.8210, p = 0.0236) correlated positively to the homeostatic model. Discussion: Overall, dSAT seems to be a distinct abdominal adipose depot supporting an independent metabolic function that may have a potential role in the development of obesity‐associated complications.  相似文献   
174.

Background

Distraction osteogenesis is the standard treatment for the management of lower limb length discrepancy of more than 3 cm and bone loss secondary to congenital anomalies, trauma or infection. This technique consists of an osteotomy of the bone to be lengthened, application of an external fixator, followed by gradual and controlled distraction of the bone ends. Although limb lengthening using the Ilizarov distraction osteogenesis principle yields excellent results in most cases, the technique has numerous problems and is not well tolerated by many children. The objective of the current study is to determine if Botulinum Toxin A (BTX-A), which is known to possess both analgesic and paralytic actions, can be used to alleviate post-operative pain and improve the functional outcome of children undergoing distraction osteogenesis.

Methods/Design

The study design consists of a multi centre, randomized, double-blinded, placebo-controlled trial. Patients between ages 5–21 years requiring limb lengthening or deformity correction using distraction will be recruited from 6 different sites (Shriners Hospital for Children in Montreal, Honolulu, Philadelphia and Portland as well as DuPont Hospital for Children in Wilmington, Delaware and Hospital for Sick Children in Toronto, Ont). Approximately 150 subjects will be recruited over 2 years and will be randomized to either receive 10 units per Kg of BTX-A or normal saline (control group) intraoperatively following the surgery. Functional outcome effects will be assessed using pain scores, medication dosages, range of motion, flexibility, strength, mobility function and quality of life of the patient. IRB approval was obtained from all sites and adverse reactions will be monitored vigorously and reported to IRB, FDA and Health Canada.

Discussion

BTX-A injection has been widely used world wide with no major side effects reported. However, to the best of our knowledge, this is the first time BTX-A is being used under the context of limb lengthening and deformity correction.

Trial Registration

NCT00412035  相似文献   
175.
Transition states can be predicted from an enzyme's affinity to related transition-state analogues. 5'-Methylthioadenosine nucleosidases (MTANs) are involved in bacterial quorum sensing pathways and thus are targets for antibacterial drug design. The transition-state characteristics of six MTANs are compared by analyzing dissociation constants (K(d)) with a small array of representative transition-state analogues. These inhibitors mimic early or late dissociative transition states with K(d) values in the picomolar range. Our results indicate that the K(d) ratio for mimics of early and late transition states are useful in distinguishing between these states. By this criterion, the transition states of Neisseria meningitides and Helicobacter pylori MTANs are early dissociative, whereas Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella pneumoniae MTANs have late dissociative characters. This conclusion is confirmed independently by the characteristic [1'- (3)H] and [1'- (14)C] kinetic isotope effects (KIEs) of these enzymes. Large [1'- (3)H] and unity [1'- (14)C] KIEs are observed for late dissociative transition states, whereas early dissociative states showed close-to-unity [1'- (3)H] and significant [1'- (14)C] KIEs. K d values of various MTANs for individual transition-state analogues provide tentative information about transition-state structures due to varying catalytic efficiencies of enzymes. Comparing K d ratios for mimics of early and late transition states removes limitations inherent to the enzyme and provides a better predictive tool in discriminating between possible transition-state structures.  相似文献   
176.
No single animal model for severe acute respiratory syndrome (SARS) reproduces all aspects of the human disease. Young inbred mice support SARS-coronavirus (SARS-CoV) replication in the respiratory tract and are available in sufficient numbers for statistical evaluation. They are relatively inexpensive and easily accessible, but their use in SARS research is limited because they do not develop illness following infection. Older (12- to 14-mo-old) BALB/c mice develop clinical illness and pneumonitis, but they can be hard to procure, and immune senescence complicates pathogenesis studies. We adapted the SARS-CoV (Urbani strain) by serial passage in the respiratory tract of young BALB/c mice. Fifteen passages resulted in a virus (MA15) that is lethal for mice following intranasal inoculation. Lethality is preceded by rapid and high titer viral replication in lungs, viremia, and dissemination of virus to extrapulmonary sites accompanied by lymphopenia, neutrophilia, and pathological changes in the lungs. Abundant viral antigen is extensively distributed in bronchial epithelial cells and alveolar pneumocytes, and necrotic cellular debris is present in airways and alveoli, with only mild and focal pneumonitis. These observations suggest that mice infected with MA15 die from an overwhelming viral infection with extensive, virally mediated destruction of pneumocytes and ciliated epithelial cells. The MA15 virus has six coding mutations associated with adaptation and increased virulence; when introduced into a recombinant SARS-CoV, these mutations result in a highly virulent and lethal virus (rMA15), duplicating the phenotype of the biologically derived MA15 virus. Intranasal inoculation with MA15 reproduces many aspects of disease seen in severe human cases of SARS. The availability of the MA15 virus will enhance the use of the mouse model for SARS because infection with MA15 causes morbidity, mortality, and pulmonary pathology. This virus will be of value as a stringent challenge in evaluation of the efficacy of vaccines and antivirals.  相似文献   
177.
Autophagy is the major cellular pathway for bulk degradation of cytosolic material and is required to maintain viability under starvation conditions. To determine the contribution of autophagy to starvation stress responses in the filamentous fungus Aspergillus fumigatus, we disrupted the A. fumigatus atg1 gene, encoding a serine/threonine kinase required for autophagy. The ΔAfatg1 mutant showed abnormal conidiophore development and reduced conidiation, but the defect could be bypassed by increasing the nitrogen content of the medium. When transferred to starvation medium, wild-type hyphae were able to undergo a limited amount of growth, resulting in radial expansion of the colony. In contrast, the ΔAfatg1 mutant was unable to grow under these conditions. However, supplementation of the medium with metal ions rescued the ability of the ΔAfatg1 mutant to grow in the absence of a carbon or nitrogen source. Depleting the medium of cations by using EDTA was sufficient to induce autophagy in wild-type A. fumigatus, even in the presence of abundant carbon and nitrogen, and the ΔAfatg1 mutant was severely growth impaired under these conditions. These findings establish a role for autophagy in the recycling of internal nitrogen sources to support conidiophore development and suggest that autophagy also contributes to the recycling of essential metal ions to sustain hyphal growth when exogenous nutrients are scarce.  相似文献   
178.
Human SCO1 and SCO2 are metallochaperones that are essential for the assembly of the catalytic core of cytochrome c oxidase (COX). Here we show that they have additional, unexpected roles in cellular copper homeostasis. Mutations in either SCO result in a cellular copper deficiency that is both tissue and allele specific. This phenotype can be dissociated from the defects in COX assembly and is suppressed by overexpression of SCO2, but not SCO1. Overexpression of a SCO1 mutant in control cells in which wild-type SCO1 levels were reduced by shRNA recapitulates the copper-deficiency phenotype in SCO1 patient cells. The copper-deficiency phenotype reflects not a change in high-affinity copper uptake but rather a proportional increase in copper efflux. These results suggest a mitochondrial pathway for the regulation of cellular copper content that involves signaling through SCO1 and SCO2, perhaps by their thiol redox or metal-binding state.  相似文献   
179.
Recognition of specific molecule signatures of microbes, including pathogens, induces innate immune responses in plants, as well as in animals. Analogously, a nematode pheromone, the ascaroside ascr#18, induces hallmark plant defences including activation of (a) mitogen‐activated protein kinases, (b) salicylic acid‐ and jasmonic acid‐mediated defence signalling pathways and (c) defence gene expression and provides protection to a broad spectrum of pathogens. Ascr#18 is a member of an evolutionarily conserved family of nematode signalling molecules and is the major ascaroside secreted by plant–parasitic nematodes. Here, we report the effects of ascr#18 on resistance in four of the major economically important crops: maize, rice, wheat and soybean to some of their associated pathogens. Treatment with low nanomolar to low micromolar concentrations of ascr#18 provided from partial to strong protection in seven of eight plant–pathogen systems tested with viruses, bacteria, fungi, oomycetes and nematodes. This research may have potential to improve agricultural sustainability by reducing use of potentially harmful agrochemicals and enhance food security worldwide.  相似文献   
180.
Tumor cell adhesion and proteolysis of the extracellular matrix proteins surrounding the cells are tightly linked processes in tumor invasion. In this study, we sought to identify components of the cell surface of a vertical growth phase melanoma cell line, WM1341D, that mediate invasive cellular behavior. We determined by antisense inhibition that melanoma chondroitin sulfate proteoglycan (MCSP) and membrane-type 3 matrix metalloproteinase (MT3-MMP) expressed on WM1341D are required for invasion of type I collagen and degradation of type I gelatin. MT3-MMP co-immunoprecipitated with MCSP in WM1341D melanoma cells cultured on type I collagen or laminin. The association between MT3-MMP and MCSP was largely disrupted by removing chondroitin sulfate glycosaminoglycan (CS) from the cell surface, suggesting CS could mediate the association between the two cell surface core proteins. Recombinant MT3-MMP and MT3-MMP from whole cell lysates of WM1341D cells were specifically eluted from CS- conjugated affinity columns. The results indicate that MT3-MMP possesses the potential to promote melanoma invasion and proteolysis and that the formation of a complex between MT3-MMP and MCSP may be a crucial step in activating these processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号