首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3175篇
  免费   362篇
  2022年   18篇
  2021年   42篇
  2020年   23篇
  2019年   25篇
  2018年   30篇
  2017年   44篇
  2016年   78篇
  2015年   125篇
  2014年   123篇
  2013年   152篇
  2012年   220篇
  2011年   202篇
  2010年   127篇
  2009年   109篇
  2008年   163篇
  2007年   161篇
  2006年   132篇
  2005年   122篇
  2004年   131篇
  2003年   132篇
  2002年   136篇
  2001年   68篇
  2000年   62篇
  1999年   60篇
  1998年   42篇
  1997年   39篇
  1996年   43篇
  1995年   31篇
  1994年   27篇
  1993年   34篇
  1992年   53篇
  1991年   51篇
  1990年   50篇
  1989年   48篇
  1988年   48篇
  1987年   46篇
  1986年   37篇
  1985年   44篇
  1984年   37篇
  1983年   31篇
  1982年   28篇
  1981年   19篇
  1980年   30篇
  1979年   29篇
  1978年   23篇
  1976年   20篇
  1975年   30篇
  1973年   23篇
  1970年   18篇
  1968年   24篇
排序方式: 共有3537条查询结果,搜索用时 31 毫秒
151.
152.
Factor VIII (FVIII) is the blood coagulation protein which when defective or deficient causes for hemophilia A, a severe hereditary bleeding disorder. Activated FVIII (FVIIIa) is the cofactor to the serine protease factor IXa (FIXa) within the membrane‐bound Tenase complex, responsible for amplifying its proteolytic activity more than 100,000 times, necessary for normal clot formation. FVIII is composed of two noncovalently linked peptide chains: a light chain (LC) holding the membrane interaction sites and a heavy chain (HC) holding the main FIXa interaction sites. The interplay between the light and heavy chains (HCs) in the membrane‐bound state is critical for the biological efficiency of FVIII. Here, we present our cryo‐electron microscopy (EM) and structure analysis studies of human FVIII‐LC, when helically assembled onto negatively charged single lipid bilayer nanotubes. The resolved FVIII‐LC membrane‐bound structure supports aspects of our previously proposed FVIII structure from membrane‐bound two‐dimensional (2D) crystals, such as only the C2 domain interacts directly with the membrane. The LC is oriented differently in the FVIII membrane‐bound helical and 2D crystal structures based on EM data, and the existing X‐ray structures. This flexibility of the FVIII‐LC domain organization in different states is discussed in the light of the FVIIIa–FIXa complex assembly and function. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 448–459, 2013.  相似文献   
153.
Epigenetic modifications such as DNA methylation play a key role in gene regulation and disease susceptibility. However, little is known about the genome-wide frequency, localization, and function of methylation variation and how it is regulated by genetic and environmental factors. We utilized the Multiple Tissue Human Expression Resource (MuTHER) and generated Illumina 450K adipose methylome data from 648 twins. We found that individual CpGs had low variance and that variability was suppressed in promoters. We noted that DNA methylation variation was highly heritable (h2median = 0.34) and that shared environmental effects correlated with metabolic phenotype-associated CpGs. Analysis of methylation quantitative-trait loci (metQTL) revealed that 28% of CpGs were associated with nearby SNPs, and when overlapping them with adipose expression quantitative-trait loci (eQTL) from the same individuals, we found that 6% of the loci played a role in regulating both gene expression and DNA methylation. These associations were bidirectional, but there were pronounced negative associations for promoter CpGs. Integration of metQTL with adipose reference epigenomes and disease associations revealed significant enrichment of metQTL overlapping metabolic-trait or disease loci in enhancers (the strongest effects were for high-density lipoprotein cholesterol and body mass index [BMI]). We followed up with the BMI SNP rs713586, a cg01884057 metQTL that overlaps an enhancer upstream of ADCY3, and used bisulphite sequencing to refine this region. Our results showed widespread population invariability yet sequence dependence on adipose DNA methylation but that incorporating maps of regulatory elements aid in linking CpG variation to gene regulation and disease risk in a tissue-dependent manner.  相似文献   
154.
Several lines of evidence suggest that genome-wide association studies (GWASs) have the potential to explain more of the “missing heritability” of common complex phenotypes. However, reliable methods for identifying a larger proportion of SNPs are currently lacking. Here, we present a genetic-pleiotropy-informed method for improving gene discovery with the use of GWAS summary-statistics data. We applied this methodology to identify additional loci associated with schizophrenia (SCZ), a highly heritable disorder with significant missing heritability. Epidemiological and clinical studies suggest comorbidity between SCZ and cardiovascular-disease (CVD) risk factors, including systolic blood pressure, triglycerides, low- and high-density lipoprotein, body mass index, waist-to-hip ratio, and type 2 diabetes. Using stratified quantile-quantile plots, we show enrichment of SNPs associated with SCZ as a function of the association with several CVD risk factors and a corresponding reduction in false discovery rate (FDR). We validate this “pleiotropic enrichment” by demonstrating increased replication rate across independent SCZ substudies. Applying the stratified FDR method, we identified 25 loci associated with SCZ at a conditional FDR level of 0.01. Of these, ten loci are associated with both SCZ and CVD risk factors, mainly triglycerides and low- and high-density lipoproteins but also waist-to-hip ratio, systolic blood pressure, and body mass index. Together, these findings suggest the feasibility of using genetic-pleiotropy-informed methods for improving gene discovery in SCZ and identifying potential mechanistic relationships with various CVD risk factors.  相似文献   
155.
Zoonotic pathogens often infect several animal species, and gene flow among populations infecting different host species may affect the biological traits of the pathogen including host specificity, transmissibility and virulence. The bacterium Campylobacter jejuni is a widespread zoonotic multihost pathogen, which frequently causes gastroenteritis in humans. Poultry products are important transmission vehicles to humans, but the bacterium is common in other domestic and wild animals, particularly birds, which are a potential infection source. Population genetic studies of C. jejuni have mainly investigated isolates from humans and domestic animals, so to assess C. jejuni population structure more broadly and investigate host adaptation, 928 wild bird isolates from Europe and Australia were genotyped by multilocus sequencing and compared to the genotypes recovered from 1366 domestic animal and human isolates. Campylobacter jejuni populations from different wild bird species were distinct from each other and from those from domestic animals and humans, and the host species of wild bird was the major determinant of C. jejuni genotype, while geographic origin was of little importance. By comparison, C. jejuni differentiation was restricted between more phylogenetically diverse farm animals, indicating that domesticated animals may represent a novel niche for C. jejuni and thereby driving the evolution of those bacteria as they exploit this niche. Human disease is dominated by isolates from this novel domesticated animal niche.  相似文献   
156.
157.
Rate control analysis defines the in vivo control map governing yeast protein synthesis and generates an extensively parameterized digital model of the translation pathway. Among other non‐intuitive outcomes, translation demonstrates a high degree of functional modularity and comprises a non‐stoichiometric combination of proteins manifesting functional convergence on a shared maximal translation rate. In exponentially growing cells, polypeptide elongation (eEF1A, eEF2, and eEF3) exerts the strongest control. The two other strong control points are recruitment of mRNA and tRNAi to the 40S ribosomal subunit (eIF4F and eIF2) and termination (eRF1; Dbp5). In contrast, factors that are found to promote mRNA scanning efficiency on a longer than‐average 5′untranslated region (eIF1, eIF1A, Ded1, eIF2B, eIF3, and eIF5) exceed the levels required for maximal control. This is expected to allow the cell to minimize scanning transition times, particularly for longer 5′UTRs. The analysis reveals these and other collective adaptations of control shared across the factors, as well as features that reflect functional modularity and system robustness. Remarkably, gene duplication is implicated in the fine control of cellular protein synthesis.  相似文献   
158.
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号