首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1085篇
  免费   128篇
  2021年   10篇
  2020年   9篇
  2019年   10篇
  2018年   17篇
  2017年   17篇
  2016年   16篇
  2015年   30篇
  2014年   28篇
  2013年   53篇
  2012年   62篇
  2011年   41篇
  2010年   34篇
  2009年   27篇
  2008年   53篇
  2007年   60篇
  2006年   34篇
  2005年   42篇
  2004年   37篇
  2003年   38篇
  2002年   33篇
  2001年   35篇
  2000年   38篇
  1999年   21篇
  1998年   16篇
  1997年   7篇
  1996年   9篇
  1995年   7篇
  1993年   14篇
  1992年   27篇
  1991年   16篇
  1990年   15篇
  1989年   27篇
  1988年   11篇
  1987年   15篇
  1986年   13篇
  1985年   12篇
  1984年   12篇
  1982年   12篇
  1981年   12篇
  1979年   9篇
  1977年   10篇
  1976年   9篇
  1975年   13篇
  1974年   14篇
  1973年   19篇
  1972年   17篇
  1971年   17篇
  1970年   8篇
  1967年   8篇
  1966年   9篇
排序方式: 共有1213条查询结果,搜索用时 15 毫秒
151.
152.
153.
Mutualisms are ubiquitous in nature, but constraints imposed by specialization may limit their ability to colonize novel environments synchronously. The ability of mutualisms to reassemble following disturbance is central to understanding their response to global change. Here, we demonstrate that a highly specialized pollination mutualism considered to be obligate (Phyllanthaceae: Glochidion; Lepidoptera: Gracillariidae: Epicephala) has colonized some of the world's most isolated archipelagoes, and we record, to our knowledge, for the first time the presence of Epicephala moths from 19 host Glochidion species on 17 islands in the Pacific Ocean. Our findings appear to offer a remarkable example of mutualism persistence in an insect-plant interaction characterized by reciprocal specialization and mutual dependence. These findings also appear to contradict the island biogeography paradigm that taxa with specialized biotic interactions are unlikely to colonize oceanic islands.  相似文献   
154.
155.
The Galerucinae (Coleoptera: Chrysomelidae) sensu stricto (true galerucines) comprise a large assemblage of diverse phytophagous beetles containing over 5000 described species. Together with their sister taxon, the flea beetles, which differ from true galerucines by having the hind femora usually modified for jumping, the Galerucinae sensu lato comprises over 13 000 described species and is the largest natural group within the Chrysomelidae. Unlike the flea beetles, for which robust hierarchical classification schemes have not been erected, an existing taxonomic structure exists for the true galerucines, based mostly on the works of the late John Wilcox. In the most recent taxonomic list of the Galerucinae sensu stricto, five tribes were established comprising 29 sections housing 488 genera. The majority of the diversity within these tribes is found within the tribe Luperini, in which two genera, Monolepta and Diabrotica, are known to contain over 500 described species. Here, we extend the work from previous phylogenetic studies of the Galerucinae by analysing four amplicons from three gene regions (18S and 28S rRNA; COI) representing 249 taxa, providing the largest phylogenetic analysis of this taxon to date. Using two seven‐state RNA models, we combine five maximum likelihood models (RNA + DNA for the rRNAs; three separate DNA models for the COI codon positions) for these partitions and analyse the data under likelihood using Bayesian inference. The results of these two analyses are compared with those from equally weighted parsimony. Instead of choosing the results from one optimality criterion over another, either based on statistical support, tree topology or philosophical predisposition, we elect to draw attention to the similar results produced by all three analyses, illustrating the robustness of the data to these different analytical methods. In general, the results from all three analyses are consistent with each other and previous molecular phylogenetic reconstructions for Galerucinae, except that increased taxon sampling for several groups, namely the tribes Hylaspini and Oidini, has improved the phylogenetic position of these taxa. As with previous analyses, under‐sampled taxa, such as the Old World Metacyclini and all sections of the subtribe Luperina, continue to be unstable, with the few taxa representing these groups fluctuating in their positions based on the implemented optimality criterion. Nonetheless, we report here the most comprehensive phylogenetic estimation for the Galerucinae to date.  相似文献   
156.
157.

Background

Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular α-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs).

Methodology/Principal Findings

We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (∼1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions.

Conclusion/Significance

Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets.  相似文献   
158.
Here we present new evidence that riboflavin is present as one of four flavins in Na+-NQR. In particular, we present conclusive evidence that the source of the neutral radical is not one of the FMNs and that riboflavin is the center that gives rise to the neutral flavosemiquinone. The riboflavin is a bona fide redox cofactor and is likely to be the last redox carrier of the enzyme, from which electrons are donated to quinone. We have constructed a double mutant that lacks both covalently bound FMN cofactors (NqrB-T236Y/NqrC-T225Y) and have studied this mutant together with the two single mutants (NqrB-T236Y and NqrC-T225Y) and a mutant that lacks the noncovalently bound FAD in NqrF (NqrF-S246A). The double mutant contains riboflavin and FAD in a 0.6:1 ratio, as the only flavins in the enzyme; noncovalently bound flavins were detected. In the oxidized form, the double mutant exhibits an EPR signal consistent with a neutral flavosemiquinone radical, which is abolished on reduction of the enzyme. The same radical can be observed in the FAD deletion mutant. Furthermore, when the oxidized enzyme reacts with ubiquinol (the reduced form of the usual electron acceptor) in a process that reverses the physiological direction of the electron flow, a single kinetic phase is observed. The kinetic difference spectrum of this process is consistent with one-electron reduction of a neutral flavosemiquinone. The presence of riboflavin in the role of a redox cofactor is thus far unique to Na+-NQR.  相似文献   
159.
The predictions of a theory for the anomalous mole fraction effect (AMFE) are tested experimentally with synthetic nanopores in plastic. The negatively charged synthetic nanopores under consideration are highly cation selective and 50 Å in diameter at their smallest point. These pores exhibit an AMFE in mixtures of Ca2+ and monovalent cations. An AMFE occurs when the conductance through a pore is lower in a mixture of salts than in the pure salts at the same concentration. For ion channels, the textbook interpretation of the AMFE is that multiple ions move through the pore in coordinated, single-file motion. However, because the synthetic nanopores are so wide, their AMFE shows that single filing is not necessary for the AMFE. It is shown that the AMFE in the synthetic nanopores is explained by a theory of preferential ion selectivity. The unique properties of the synthetic nanopores allow us to experimentally confirm several predictions of this theory. These same properties make synthetic nanopores an interesting new platform to test theories of ion channel permeation and selectivity in general.  相似文献   
160.
Intracellular calcium release channels like ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs) mediate large Ca2+ release events from Ca2+ storage organelles lasting >5 ms. To have such long-lasting Ca2+ efflux, a countercurrent of other ions is necessary to prevent the membrane potential from becoming the Ca2+ Nernst potential in <1 ms. A recent model of ion permeation through a single, open RyR channel is used here to show that the vast majority of this countercurrent is conducted by the RyR itself. Consequently, changes in membrane potential are minimized locally and instantly, assuring maintenance of a Ca2+-driving force. This RyR autocountercurrent is possible because of the poor Ca2+ selectivity and high conductance for both monovalent and divalent cations of these channels. The model shows that, under physiological conditions, the autocountercurrent clamps the membrane potential near 0 mV within ∼150 μs. Consistent with experiments, the model shows how RyR unit Ca2+ current is defined by luminal [Ca2+], permeable ion composition and concentration, and pore selectivity and conductance. This very likely is true of the highly homologous pore of the IP3R channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号