首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2965篇
  免费   191篇
  国内免费   1篇
  2023年   6篇
  2022年   15篇
  2021年   34篇
  2020年   18篇
  2019年   28篇
  2018年   53篇
  2017年   29篇
  2016年   70篇
  2015年   119篇
  2014年   155篇
  2013年   174篇
  2012年   240篇
  2011年   209篇
  2010年   118篇
  2009年   123篇
  2008年   175篇
  2007年   180篇
  2006年   176篇
  2005年   175篇
  2004年   167篇
  2003年   181篇
  2002年   145篇
  2001年   31篇
  2000年   29篇
  1999年   40篇
  1998年   36篇
  1997年   40篇
  1996年   27篇
  1995年   27篇
  1994年   25篇
  1993年   22篇
  1992年   22篇
  1991年   29篇
  1990年   21篇
  1989年   22篇
  1988年   17篇
  1987年   13篇
  1986年   6篇
  1985年   14篇
  1984年   16篇
  1983年   6篇
  1982年   9篇
  1981年   10篇
  1980年   9篇
  1979年   17篇
  1978年   7篇
  1977年   9篇
  1976年   8篇
  1974年   10篇
  1968年   6篇
排序方式: 共有3157条查询结果,搜索用时 93 毫秒
111.

Background

A Lactobacillus-dominated cervicovaginal microbiota (VMB) protects women from adverse reproductive health outcomes, but the role of L. iners in the VMB is poorly understood. Our aim was to explore the association between the cervicovaginal L. iners and L. crispatus proteomes and VMB composition.

Methods

The vaginal proteomes of 50 Rwandan women at high HIV risk, grouped into four VMB groups (based on 16S rDNA microarray results), were investigated by mass spectrometry using cervicovaginal lavage (CVL) samples. Only samples with positive 16S results for L. iners and/or L. crispatus within each group were included in subsequent comparative protein analyses: Lactobacillus crispatus-dominated VMB cluster (with 16S-proven L. iners (ni) = 0, and with 16S-proven L. crispatus (nc) = 5), L. iners-dominated VMB cluster (ni = 11, nc = 4), moderate dysbiosis (ni = 12, nc = 2); and severe dysbiosis (ni = 8, nc = 2). The relative abundances of proteins that were considered specific for L. iners and L. crispatus were compared among VMB groups.

Results

Forty Lactobacillus proteins were identified of which 7 were specific for L. iners and 11 for L. crispatus. The relative abundances of L. iners DNA starvation/stationary phase protection protein (DPS), and the glycolysis enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate isomerase (GPI), were significantly decreased in women with L. iners-containing dysbiosis compared to women with a L. iners-dominated VMB, independent of vaginal pH and L. iners abundance. Furthermore, L. iners DPS, GAPDH, GPI, and fructose-bisphosphate aldolase (ALDO) were significantly negatively associated with vaginal pH. Glycolysis enzymes of L. crispatus showed a similar negative, but nonsignificant, trend related to dysbiosis.

Conclusions

Most identified Lactobacillus proteins had conserved intracellular functions, but their high abundance in CVL supernatant might imply an additional extracellular (moonlighting) role. Our findings suggest that these proteins can be important in maintaining a Lactobacillus-dominated VMB. Functional studies are needed to investigate their roles in vaginal bacterial communities and whether they can be used to prevent vaginal dysbiosis.  相似文献   
112.
113.
114.
115.
Aedes albopictus is a vector of arboviruses and filarial nematodes. Originating from Asia, this mosquito has rapidly expanded its geographical distribution and colonized areas across both temperate and tropical regions. Due to the increase in insecticide resistance, the use of environmentally friendly vector control methods is encouraged worldwide. Using methods based on semiochemicals in baited traps are promising for management of mosquito populations. Interestingly, human skin microbiota was shown to generate volatile compounds that attract the mosquito species Anopheles gambiae and Aedes aegypti. Here, we investigated the composition of skin bacteria from different volunteers and the attractive potential of individual isolates to nulliparous Ae. albopictus females. We showed that three out of 16 tested isolates were more attractive and two were more repulsive. We identified dodecenol as being preferentially produced by attractive isolates and 2-methyl-1-butanol (and to a lesser extent 3-methyl-1-butanol) as being overproduced by these isolates compared with the other ones. Those bacterial volatile organic compounds represent promising candidates but further studies are needed to evaluate their potential application for baited traps improvement.  相似文献   
116.
117.
118.

Background

Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established.

Methodology/Principal Findings

We exposed 15 participants to short duration (50 s) monochromatic violet (430 nm), blue (473 nm), and green (527 nm) light exposures of equal photon flux (1013ph/cm2/s) while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus.

Conclusion/Significance

These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function.  相似文献   
119.
Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK) cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV) by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs) for cytokine production, preserves the conventional dendritic cell (cDC) compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate cytokine shock and to the promotion of adaptive immunity.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号