首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2954篇
  免费   189篇
  国内免费   1篇
  3144篇
  2023年   8篇
  2022年   16篇
  2021年   36篇
  2020年   19篇
  2019年   28篇
  2018年   53篇
  2017年   30篇
  2016年   71篇
  2015年   119篇
  2014年   157篇
  2013年   178篇
  2012年   244篇
  2011年   213篇
  2010年   124篇
  2009年   124篇
  2008年   174篇
  2007年   185篇
  2006年   176篇
  2005年   174篇
  2004年   167篇
  2003年   181篇
  2002年   145篇
  2001年   31篇
  2000年   29篇
  1999年   38篇
  1998年   34篇
  1997年   38篇
  1996年   27篇
  1995年   27篇
  1994年   24篇
  1993年   22篇
  1992年   21篇
  1991年   27篇
  1990年   19篇
  1989年   19篇
  1988年   13篇
  1987年   13篇
  1985年   13篇
  1984年   15篇
  1983年   5篇
  1982年   8篇
  1981年   8篇
  1980年   8篇
  1979年   9篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1974年   6篇
  1970年   5篇
  1968年   6篇
排序方式: 共有3144条查询结果,搜索用时 15 毫秒
81.

Background

Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established.

Methodology/Principal Findings

We exposed 15 participants to short duration (50 s) monochromatic violet (430 nm), blue (473 nm), and green (527 nm) light exposures of equal photon flux (1013ph/cm2/s) while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus.

Conclusion/Significance

These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function.  相似文献   
82.
Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK) cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV) by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs) for cytokine production, preserves the conventional dendritic cell (cDC) compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate cytokine shock and to the promotion of adaptive immunity.  相似文献   
83.
84.
Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies) and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.  相似文献   
85.
The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting), using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge). We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of differential diagnoses. We outline possible steps toward translating this computational approach to the bedside, to supplement today's evidence-based medicine with a quantitatively founded model-based medicine that integrates mechanistic knowledge with patient-specific information.  相似文献   
86.
Biological Invasions - Insufficient data on the origins of the first introduced propagule and the initial stages of invasion complicate the reconstruction of a species’ invasion history....  相似文献   
87.
The bioartificial pancreas encapsulating pancreatic islets in immunoprotective hydrogel is a promising therapy for Type 1 diabetes. As pancreatic islets are highly metabolically active and exquisitely sensitive to hypoxia, maintaining O2 supply after transplantation remains a major challenge. In this study, we address the O2 limitation by combining silicone-encapsulated CaO2 (silicone-CaO2) to generate O2 with an extracellular hemoglobin O2-carrier coencapsulated with islets. We showed that the hemoglobin improved by 37% the O2-diffusivity through an alginate hydrogel and displayed antioxidant properties neutralizing deleterious reactive O2 species produced by silicone-CaO2. While the hemoglobin alone failed to maintain alginate macroencapsulated neonate pig islets under hypoxia, silicone-CaO2 alone or combined to the hemoglobin restored islet viability and insulin secretion and prevented proinflammatory metabolism (PTGS2 expression). Interestingly, the combination took the advantages of the two individual strategies, improved neonate pig islet viability and insulin secretion in normoxia, and VEGF secretion and PDK1 normalization in hypoxia. Moreover, we confirmed the specific benefits of the combination compared to silicone-CaO2 alone on murine pseudo-islet viability in normoxia and hypoxia. For the first time, our results show the interest of combining an O2 provider with hemoglobin as an effective strategy to overcome O2 limitations in tissue engineering.  相似文献   
88.
Crystallographic studies of L-chain horse spleen apoferritin (HSF) co-crystallized with Pt-hematoporphyrin IX and Sn-protoporphyrin IX have brought significant new insights into structure-function relationships in ferritins. Interactions of HSF with porphyrins are discussed. Structural results show that the nestling properties into HSF are dependent on the porphyrin moiety. (Only protoporphyrin IX significantly interacts with the protein, whereas hematoporphyrin IX does not.) These studies additionally point out the L-chain HSF ability to demetalate metalloporphyrins, a result which is of importance in looking at the iron storage properties of ferritins. In both compound investigated (whether the porphyrin reaches the binding site or not), the complexation appears to be concomitant with the extraction of the metal from the porphyrin. To analyze further the previous results, a three-dimensional alignment of ferritin sequences based on available crystallographic coordinates, including the present structures, is given. It confirms a high degree of homology between these members of the ferritin family and thus allows us to emphasize observed structural differences: 1) unlike L-chain HSF, H-chain human ferritin presents no preformed binding site; and 2) despite the absence of axial ligands, and due to the demetalation, L-chain HSF is able to host protoporphyrin at a similar location to that naturally found in bacterioferritin.  相似文献   
89.
During phorbol ester-induced differentiation of HL-60 monocytic cells, tumor necrosis factoralpha (TNFalpha) synthesis and secretion are increased, which contributes to the autocrine regulation of TNFalpha-responsive genes. We investigated how, during phorbol ester-induced differentiation of HL-60 cells, the secreted TNFalpha modulated plasminogen activator inhibitor type I (PAI-1) and gelatinase B (MMP-9) syntheses, two proteins involved in pericellular proteolysis. The differentiation-induced release of TNFalpha, was abolished by the hydroxamate-based matrix metalloproteinase (MMP) inhibitor, RU36156. RU36156 or a neutralizing anti-TNFalpha significantly down-regulated PAI-1 synthesis exclusively during the early phases of differentiation (from promyelocyte to monocytic-like cells), which underlined the activating role of autocrine TNFalpha during this time range. As cells progressed to monocyte/macrophage phenotype, they still released TNFalpha, but RU36156 or anti-TNFalpha no longer had an effect on PAI-1 synthesis. This lack of effect was not due to a default of TNFalpha signaling since PAI-1 synthesis was still stimulated in response to exogenous TNFalpha. TNFalpha receptor RI was also actively released and was shown to reduce TNFalpha activity which may account for the inability of soluble TNFalpha to up-regulate PAI-1 synthesis. In later mature stage, cells became susceptible to exogenous TNFalpha-induced apoptosis and rapidly lost their ability to respond to TNFalpha. The MMP-9 synthesis followed similar regulation as PAI-1. Isolated human blood monocytes-derived macrophages behave like HL-60-derived macrophages. In conclusion, these results show that during leukocyte differentiation, time windows exist during which the autocrine TNFalpha is active and then down-regulated by RI, which may temper a continuous up-regulation of the synthesis of proteins involved in pericellular proteolysis.  相似文献   
90.
The gene encoding Bacillus subtilis UMP kinase (pyrH/smbA) is transcribed in vivo into a functional enzyme, which represents approximately 0.1% of total soluble proteins. The specific activity of the purified enzyme under optimal conditions is 25 units.mg-1 of protein. In the absence of GTP, the activity of B. subtilis enzyme is less than 10% of its maximum activity. Only dGTP and 3'-anthraniloyl-2'-deoxyguanosine-5'-triphosphate (Ant-dGTP) can increase catalysis significantly. Binding of Ant-dGTP to B. subtilis UMP kinase increased the quantum yield of the fluorescent analogue by a factor of more than three. UTP and GTP completely displaced Ant-dGTP, whereas GMP and UMP were ineffective. UTP inhibits UMP kinase of B. subtilis with a lower affinity than that shown towards the Escherichia coli enzyme. Among nucleoside monophosphates, 5-fluoro-UMP (5F-UMP) and 6-aza-UMP were actively phosphorylated by B. subtilis UMP kinase, explaining the cytotoxicity of the corresponding nucleosides towards this bacterium. A structural model of UMP kinase, based on the conservation of the fold of carbamate kinase and N-acetylglutamate kinase (whose crystals were recently resolved), was analysed in the light of physicochemical and kinetic differences between B. subtilis and E. coli enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号