首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2916篇
  免费   188篇
  国内免费   1篇
  2023年   6篇
  2022年   15篇
  2021年   34篇
  2020年   18篇
  2019年   28篇
  2018年   53篇
  2017年   29篇
  2016年   70篇
  2015年   119篇
  2014年   155篇
  2013年   173篇
  2012年   240篇
  2011年   209篇
  2010年   118篇
  2009年   122篇
  2008年   174篇
  2007年   179篇
  2006年   176篇
  2005年   173篇
  2004年   167篇
  2003年   181篇
  2002年   145篇
  2001年   31篇
  2000年   29篇
  1999年   38篇
  1998年   34篇
  1997年   38篇
  1996年   27篇
  1995年   27篇
  1994年   24篇
  1993年   22篇
  1992年   21篇
  1991年   27篇
  1990年   19篇
  1989年   19篇
  1988年   13篇
  1987年   13篇
  1985年   13篇
  1984年   15篇
  1983年   5篇
  1982年   8篇
  1981年   8篇
  1980年   8篇
  1979年   9篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1974年   6篇
  1970年   5篇
  1968年   6篇
排序方式: 共有3105条查询结果,搜索用时 687 毫秒
991.
In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS) technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR). In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification) or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method) with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics.  相似文献   
992.
γ-Hemolysins are bicomponent β-barrel pore forming toxins produced by Staphylococcus aureus as water-soluble monomers, which assemble into oligomeric pores on the surface of lipid bilayers. Here, after investigating the oligomeric structure of γ-hemolysins on supported lipid bilayers (SLBs) by atomic force microscopy (AFM), we studied the effect produced by this toxin on the structure of SLBs. We found that oligomeric structures with different number of monomers can assemble on the lipid bilayer being the octameric form the stablest one. Moreover, in this membrane model we found that γ-hemolysins can form clusters of oligomers inducing a curvature in the lipid bilayer, which could probably enhance the aggressiveness of these toxins at high concentrations.  相似文献   
993.
It is a little known fact that plastoquinone-9, a vital redox cofactor of photosynthesis, doubles as a precursor for the biosynthesis of a vitamin E analog called plastochromanol-8, the physiological significance of which has remained elusive. Gene network reconstruction, GFP fusion experiments, and targeted metabolite profiling of insertion mutants indicated that Arabidopsis possesses two paralogous solanesyl-diphosphate synthases, AtSPS1 (At1g78510) and AtSPS2 (At1g17050), that assemble the side chain of plastoquinone-9 in plastids. Similar paralogous pairs were detected throughout terrestrial plant lineages but were not distinguished in the literature and genomic databases from mitochondrial homologs involved in the biosynthesis of ubiquinone. The leaves of the atsps2 knock-out were devoid of plastochromanol-8 and displayed severe losses of both non-photoactive and photoactive plastoquinone-9, resulting in near complete photoinhibition at high light intensity. Such a photoinhibition was paralleled by significant damage to photosystem II but not to photosystem I. In contrast, in the atsps1 knock-out, a small loss of plastoquinone-9, restricted to the non-photoactive pool, was sufficient to eliminate half of the plastochromanol-8 content of the leaves. Taken together, these results demonstrate that plastochromanol-8 originates from a subfraction of the non-photoactive pool of plastoquinone-9. In contrast to other plastochromanol-8 biosynthetic mutants, neither the single atsps knock-outs nor the atsps1 atsps2 double knock-out displayed any defects in tocopherols accumulation or germination.  相似文献   
994.
Human papillomavirus type 16 (HPV16) is the primary etiologic agent for cervical cancer. The infectious entry of HPV16 into cells occurs via a so-far poorly characterized clathrin- and caveolin-independent endocytic pathway, which involves tetraspanin proteins and actin. In this study, we investigated the specific role of the tetraspanin CD151 in the early steps of HPV16 infection. We show that surface-bound HPV16 moves together with CD151 within the plane of the membrane before they cointernalize into endosomes. Depletion of endogenous CD151 did not affect binding of viral particles to cells but resulted in reduction of HPV16 endocytosis. HPV16 uptake is dependent on the C-terminal cytoplasmic region of CD151 but does not require its tyrosine-based sorting motif. Reexpression of the wild-type CD151 but not mutants affecting integrin functions restored virus internalization in CD151-depleted cells. Accordingly, short interfering RNA (siRNA) gene knockdown experiments confirmed that CD151-associated integrins (i.e., α3β1 and α6β1/4) are involved in HPV16 infection. Furthermore, palmitoylation-deficient CD151 did not support HPV16 cell entry. These data show that complex formation of CD151 with laminin-binding integrins and integration of the complex into tetraspanin-enriched microdomains are critical for HPV16 endocytosis.  相似文献   
995.
The ω-3 polyunsaturated fatty acids account for more than 50% of total fatty acids in the green microalga Chlamydomonas reinhardtii, where they are present in both plastidic and extraplastidic membranes. In an effort to elucidate the lipid desaturation pathways in this model alga, a mutant with more than 65% reduction in total ω-3 fatty acids was isolated by screening an insertional mutant library using gas chromatography-based analysis of total fatty acids of cell pellets. Molecular genetics analyses revealed the insertion of a TOC1 transposon 113 bp upstream of the ATG start codon of a putative ω-3 desaturase (CrFAD7; locus Cre01.g038600). Nuclear genetic complementation of crfad7 using genomic DNA containing CrFAD7 restored the wild-type fatty acid profile. Under standard growth conditions, the mutant is indistinguishable from the wild type except for the fatty acid difference, but when exposed to short-term heat stress, its photosynthesis activity is more thermotolerant than the wild type. A comparative lipidomic analysis of the crfad7 mutant and the wild type revealed reductions in all ω-3 fatty acid-containing plastidic and extraplastidic glycerolipid molecular species. CrFAD7 was localized to the plastid by immunofluorescence in situ hybridization. Transformation of the crfad7 plastidial genome with a codon-optimized CrFAD7 restored the ω-3 fatty acid content of both plastidic and extraplastidic lipids. These results show that CrFAD7 is the only ω-3 fatty acid desaturase expressed in C. reinhardtii, and we discuss possible mechanisms of how a plastid-located desaturase may impact the ω-3 fatty acid content of extraplastidic lipids.Research on lipid metabolism in microalgae has flourished in recent years due to their potential as a rich source of ω-3 fatty acids (Guschina and Harwood, 2006; Khozin-Goldberg et al., 2011) and as a feedstock for biodiesel (Hu et al., 2008b; Rosenberg et al., 2008; Beer et al., 2009; Radakovits et al., 2010; Wijffels and Barbosa, 2010; Merchant et al., 2012; Work et al., 2012). Oils produced by microalgae resemble that of plants (Hu et al., 2008b), with the exception that they contain higher proportions of polyunsaturated fatty acid (PUFA) species (Harwood and Guschina, 2009). Desaturation of acyl groups in glycerolipids is catalyzed by fatty acid desaturases (FADs), which insert a C=C bond at a specifically defined position of an acyl chain (Shanklin and Cahoon, 1998). The degree of unsaturation of fatty acid components largely determines the chemical property and thus the utility of the oils produced. FADs have been one of the major tools for the genetic engineering of oil composition in land crops (Shanklin and Cahoon, 1998; Napier et al., 1999). In view of biodiesel applications, low PUFA content is advantageous in algal oil because of oxidation issues (Frankel, 1991).With the suites of sophisticated molecular genetic and genomic tools developed in the green microalga Chlamydomonas reinhardtii and the existence of substantial literature related to its cell biology, physiology, and biochemistry, this organism has emerged as a major model for research on algal oil (Radakovits et al., 2010; Merchant et al., 2012; Liu and Benning, 2013). Although the understanding of lipid metabolism in C. reinhardtii largely relies on sequence homologies to other models (Riekhof et al., 2005) and is still rather limited compared with the model plant Arabidopsis (Arabidopsis thaliana; Li-Beisson et al., 2010), functional studies based on mutants have started to provide important insights into the biosynthesis and turnover of membrane and storage lipids in this model alga (Riekhof et al., 2005; Work et al., 2010; Fan et al., 2011; Goodson et al., 2011; Boyle et al., 2012; Li et al., 2012a, 2012b; Yoon et al., 2012).In C. reinhardtii, C16 and C18 PUFAs (ω-3 + ω-6) make up to 60 mol% of total membrane fatty acids, of which more than 80% are ω-3 species (Giroud and Eichenberger, 1988; Siaut et al., 2011). Biochemical evidence for lipid-linked desaturation of fatty acyl chains has been established in C. reinhardtii over 20 years (Giroud and Eichenberger, 1989), but only two C. reinhardtii mutants affected in fatty acid desaturation have been described to date. These are crfad6 (hf-9), an insertional mutant for the plastidial ω-6 desaturase FAD6 (Sato et al., 1995), and microRNA-based silenced lines for the Δ4 desaturase CrΔ4FAD (Zäuner et al., 2012). The putative microsomal Δ12 desaturase FAD2 (Chi et al., 2008) and front-end ω-13 desaturase (Kajikawa et al., 2006) have been characterized by heterologous expression in the methylotrophic yeast Pichia pastoris, but no mutant is available. Moreover, although ω-3 PUFA is the most abundant fatty acid class in C. reinhardtii, the ω-3 desaturase remains uncharacterized, and no mutant with specific reduction in ω-3 content has been isolated so far.In Arabidopsis and C. reinhardtii, ω-3 PUFAs are present in both plastidic and extraplastidic lipids such as monogalactosyldiacylglycerol (MGDG) and phosphatidylethanolamine (PtdEtn), respectively (Mendiola-Morgenthaler et al., 1985; Giroud et al., 1988). While in plants there are distinct genes for plastidial and extraplastidial ω-3 FADs (Wallis and Browse, 2002), only one putative ω-3 desaturase seems encoded in the C. reinhardtii genome (version 5.0; Merchant et al., 2007). This raises several intriguing possibilities, including the existence of a mechanism to export ω-3 acyls from their site of biogenesis to other membranes or a dual localization of the ω-3 desaturase homolog (plastid and endoplasmic reticulum [ER]). In this study, we report the identification and characterization of a C. reinhardtii mutant defective in the promoter region of the putative ω-3 FAD encoded by the Cre01.g038600 locus. We show that while this enzyme is localized to plastids, impairment in its expression leads to a reduction of ω-3 fatty acids acylated to both plastidial and ER lipids. Additionally, using plastidial transformation of the mutant, it is demonstrated that the location of this desaturase in the plastid alone is sufficient to ensure normal ω-3 fatty acid content in extraplastidic lipids. Possible acyl desaturation and trafficking mechanisms implied by these findings are discussed.  相似文献   
996.
A culture-dependent study was performed with the aim of assessing the carbon, electron and Fe(III) sources used for the dissimilatory Fe(III) reduction pathway and the diversity of culturable Fe(III)-reducers in the anoxic zone of the meromictic Lake Pavin. This metabolic pathway was investigated in enrichment cultures inoculated with water samples collected at 70 m depth in the anoxic zone of Lake Pavin. Combinations of different media, organic acids, and incubation gas phases were performed. The potential for Fe(III) reduction in the different growth conditions was assessed by measuring the accumulation of Fe(II) overtime. Bacterial community structure was determined in each growth conditions by Temporal Temperature gradient Gel Electrophoresis (TTGE) profiles of 16S rDNA genes and bands of interest in positive enrichments were sequenced. Comparisons of bacterial community structure between growth conditions revealed that the electron donor, the basal media as well as the Fe(III) source yielded to the selection of different bacterial populations, suggesting that Fe(III) reducers occupy different ecological niches in the anoxic zone of Lake Pavin. Facultative Fe(III) reducers, such as fermentative (e.g., Pseudomonas, Clostridium) and sulphate-reducing (e.g., Desulfovibrio sp.) bacteria, were retrieved in enrichments but well-known obligatory Fe(III) reducers (e.g., Geobacter) were not detected. A greater Fe(III) reduction was noted under H2:CO2 gas phase, suggesting that H2 is used as an electron donor for Fe(III) reduction. Acetate was not used as a precursor for this terminal electron-accepting process, and a high Fe(III) reduction was observed with fumarate provided as the electron donor and carbon sources suggesting that this metabolite may be energetically more beneficial for Fe(III)-reducers.  相似文献   
997.
Three new Leuctra species, L. khroumiriensis sp. n., L. sartorii sp. n. and L. medjerdensis sp. n., from Tunisia, are described. They share a close morphological relationship with two other species of the hippopus group, L. occitana Despax and L. vaillanti Aubert, which are redescribed. L. occitana is redescribed from material collected in Southern Spain, and L. vaillanti from Moroccan and Tunisian material, constituting the first record for Tunisia.  相似文献   
998.
999.
1000.
Abstract

The non-exchangeable 1H-NMR signals of the branch core trinucleotide of the lariat branch site (A2′p5′G 3′p5′C), 1) and its derivatives 2 and 3 are completely assigned using one- and two- dimensional NMR techniques including NOE, COSY, NOESY, 1H-1HINADEQUATE and 2D-J-resolved spectroscopy. From the vicinal coupling constants in the individual ribose rings, NOE data and T1 measurements, the following properties of the trimers are deduced.(i)The unique stacking behavior of the trimers is S1′N 3′N, and the sugar rings exist predominantly in the N-conformation (3′-endo-2′-exo).(ii)The sugar-base orientations appear to be anti.(iii) The branched trimers exist in solution as single-stranded right-handed conformations resembling A-RNA with stacking between the adenine and guanine residues in aqueous solution at 21°C and pH 7.2.(iv) The calculated values for the torsion angles εt andγ+ for the trimers are 201–203° and 71–86%, respectively, while the percent β1 values are higher for the guanine (87–92%) than the cytosine residues (73–77%). The computer generated depiction of the triribonucleotide 1 is also shown. These subtle structural features may act as recognition signals for this critical lariat branch site which is essential for the second step in yeast mRNA splicing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号