首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2915篇
  免费   188篇
  国内免费   1篇
  2023年   6篇
  2022年   12篇
  2021年   35篇
  2020年   18篇
  2019年   28篇
  2018年   53篇
  2017年   29篇
  2016年   70篇
  2015年   119篇
  2014年   155篇
  2013年   173篇
  2012年   240篇
  2011年   209篇
  2010年   118篇
  2009年   122篇
  2008年   174篇
  2007年   179篇
  2006年   176篇
  2005年   173篇
  2004年   167篇
  2003年   181篇
  2002年   145篇
  2001年   31篇
  2000年   29篇
  1999年   38篇
  1998年   34篇
  1997年   38篇
  1996年   27篇
  1995年   27篇
  1994年   24篇
  1993年   22篇
  1992年   21篇
  1991年   27篇
  1990年   19篇
  1989年   19篇
  1988年   13篇
  1987年   14篇
  1985年   13篇
  1984年   15篇
  1983年   5篇
  1982年   8篇
  1981年   8篇
  1980年   8篇
  1979年   9篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1974年   6篇
  1970年   5篇
  1968年   6篇
排序方式: 共有3104条查询结果,搜索用时 62 毫秒
131.
The present results demonstrate that pyridoxal, pyridoxal 5′-phosphate (PLP) and pyridoxal 5′-diphospho-5′-adenosine (PLP-AMP) inhibit Candida guilliermondii and human DNA topoisomerases I in forming an aldimine with the ε-amino group of an active site lysine. PLP acts as a competitive inhibitor of C.guilliermondii topoisomerase I (Ki = 40 μM) that blocks the cleavable complex formation. Chemical reduction of PLP-treated enzyme reveals incorporation of 1 mol of PLP per mol of protein. The limited trypsic proteolysis releases a 17 residue peptide bearing a lysine-bound PLP (KPPNTVIFDFLGK*DSIR). Targeted lysine (K*) in C.guilliermondii topoisomerase I corresponds to that found in topoisomerase I of Homo sapiens (K532), Candida albicans (K468), Saccharomyces cerevisiae (K458) and Schizosaccharomyces pombe (K505). In the human enzyme, K532, belonging to the active site acts as a general acid catalyst and is therefore essential for activity. The spatial orientation of K532–PLP within the active site was approached by molecular modeling using available crystallographic data. The PLP moiety was found at close proximity of several active residues. PLP could be involved in the cellular control of topoisomerases IB. It constitutes an efficient tool to explore topoisomerase IB dynamics during catalysis and is also a lead for new drugs that trap the lysine general acid.  相似文献   
132.
133.
A series of transgenic poplars down-regulated for cinnamyl alcohol dehydrogenase (CAD) was analyzed by thioacidolysis. Among the lignin-derived monomers, the indene compounds that were recently shown to originate from sinapaldehyde incorporated into lignins through 8-O-4-cross-coupling, were found to increase as a function of CAD deficiency level. While these syringyl markers were recovered in substantial amounts in the most severely depressed lines, the markers for coniferaldehyde incorporation were recovered in only low amounts. In conjunction with these additional sinapaldehyde units and relative to the control samples, lignins in CAD-deficient poplar lines had less conventional syringyl-units and beta-O-4-bonds and more free phenolic groups. We found that almost half of the polymers in the most deficient lines could be solubilized in alkali and at room temperature. This unusual behavior suggests that lignins in CAD-deficient poplars occur as small, alkali-leachable lignin domains. That mainly sinapaldehyde incorporates into the lignins of CAD-deficient poplars suggests that the recently identified sinapyl alcohol dehydrogenase (SAD), which is structurally distinct from the CAD enzyme targeted herein, does not play any substantial role in constitutive lignification in poplar.  相似文献   
134.
135.
We studied in rats the expression of genes involved in gluconeogenesis from glutamine and glycerol in the small intestine (SI) during fasting and diabetes. From Northern blot and enzymatic studies, we report that only phosphoenolpyruvate carboxykinase (PEPCK) activity is induced at 24 h of fasting, whereas glucose-6-phosphatase (G-6-Pase) activity is induced only from 48 h. Both genes then plateau, whereas glutaminase and glycerokinase strikingly rebound between 48 and 72 h. The two latter genes are fully expressed in streptozotocin-diabetic rats. From arteriovenous balance and isotopic techniques, we show that the SI does not release glucose at 24 h of fasting and that SI gluconeogenesis contributes to 35% of total glucose production in 72-h-fasted rats. The new findings are that 1) the SI can quantitatively account for up to one-third of glucose production in prolonged fasting; 2) the induction of PEPCK is not sufficient by itself to trigger SI gluconeogenesis; 3) G-6-Pase likely plays a crucial role in this process; and 4) glutaminase and glycerokinase may play a key potentiating role in the latest times of fasting and in diabetes.  相似文献   
136.
Minimal cut sets in biochemical reaction networks   总被引:3,自引:0,他引:3  
MOTIVATION: Structural studies of metabolic networks yield deeper insight into topology, functionality and capabilities of the metabolisms of different organisms. Here, we address the analysis of potential failure modes in metabolic networks whose occurrence will render the network structurally incapable of performing certain functions. Such studies will help to identify crucial parts in the network structure and to find suitable targets for repressing undesired metabolic functions. RESULTS: We introduce the concept of minimal cut sets for biochemical networks. A minimal cut set (MCS) is a minimal (irreducible) set of reactions in the network whose inactivation will definitely lead to a failure in certain network functions. We present an algorithm which enables the computation of the MCSs in a given network related to user-defined objective reactions. This algorithm operates on elementary modes. A number of potential applications are outlined, including network verifications, phenotype predictions, assessing structural robustness and fragility, metabolic flux analysis and target identification in drug discovery. Applications are illustrated by the MCSs in the central metabolism of Escherichia coli for growth on different substrates. AVAILABILITY: Computation and analysis of MCSs is an additional feature of the FluxAnalyzer (freely available for academic users upon request, special contracts for industrial companies; see web page below). Supplementary information: http://www.mpi-magdeburg.mpg.de/projects/fluxanalyzer  相似文献   
137.
Nutritional value of milk and meat products derived from cloning   总被引:2,自引:0,他引:2  
The development and use of milk and meat products derived from cloning depends on their safety and on the nutritional advantages they can confer to the products as perceived by consumers. The development of such products thus implies (i) to demonstrate their safety and security, (ii) to show that their nutritional value is equivalent to the traditional products, and (iii) to identify the conditions under which cloning could allow additional nutritional and health benefit in comparison to traditional products for the consumers. Both milk and meat products are a source of high quality protein as determined from their protein content and essential amino acid profile. Milk is a source of calcium, phosphorus, zinc, magnesium and vitamin B2 and B12. Meat is a source of iron, zinc and vitamin B12. An important issue regarding the nutritional quality of meat and milk is the level and quality of fat which usually present a high content in saturated fat and some modification of the fat fraction could improve the nutritional quality of the products. The role of the dietary proteins as potential allergens has to be taken into account and an important aspect regarding this question is to evaluate whether the cloning does not produce the appearance of novel allergenic structures. The presence of bio-activities associated to specific components of milk (lactoferrin, immunoglobulins, growth factors, anti-microbial components) also represents a promising development. Preliminary results obtained in rats fed cow's milk or meat-based diets prepared from control animals or from animals derived from cloning did not show any difference between control and cloning-derived products.  相似文献   
138.
Trophic interactions in a high arctic snow goose colony   总被引:2,自引:1,他引:1  
We examined the role of trophic interactions in structuringa high arctic tundra community characterized by a large breedingcolony of greater snow geese (Chen caerulescens atlantica).According to the exploitation ecosystem hypothesis of Oksanenet al. (1981), food chains are controlled by top-down interactions.However, because the arctic primary productivity is low, herbivorepopulations are too small to support functional predator populationsand these communities should thus be dominated by the plant/herbivore trophic-level interaction. Since 1990, we have beenmonitoring annual abundance and productivity of geese, the impactof goose grazing, predator abundance (mostly arctic foxes, Alopexlagopus) and the abundance of lemmings, the other significantherbivore in this community, on Bylot Island, Nunavut, Canada.Goose grazing consistently removed a significant proportionof the standing crop (  相似文献   
139.
We have screened the genome of Saccharomyces cerevisiae for fragments that confer a growth-retardation phenotype when overexpressed in a multicopy plasmid with a tetracycline-regulatable (Tet-off) promoter. We selected 714 such fragments with a mean size of 700 base-pairs out of around 84,000 clones tested. These include 493 in-frame open reading frame fragments corresponding to 454 distinct genes (of which 91 are of unknown function), and 162 out-of-frame, antisense and intergenic genomic fragments, representing the largest collection of toxic inserts published so far in yeast.  相似文献   
140.
Rubisco is a hexadecameric enzyme composed of two subunits: a small subunit (SSU) encoded by a nuclear gene (rbcS), and a large subunit (LSU) encoded by a plastid gene (rbcL). Due to its high abundance, Rubisco represents an interesting target to express peptides or small proteins as fusion products at high levels. In an attempt to modify the plant metal content, a polyhistidine sequence was fused to Rubisco, the most abundant protein of plants. Plastid transformation was used to express a polyhistidine (6x) fused to the C-terminal extremity of the tobacco LSU. Transplastomic tobacco plants were generated by cotransformation of polyethylene glycol-treated protoplasts using two vectors: one containing the 16SrDNA marker gene, conferring spectinomycin resistance, and the other the polyhistidine-tagged rbcL gene. Homoplasmic plants containing L8-(His)6S8 as a single enzyme species were obtained. These plants contained normal Rubisco amounts and activity and displayed normal photosynthetic properties and growth. Interestingly, transplastomic plants accumulated higher zinc amounts than the wild-type when grown on zinc-enriched media. The highest zinc increase observed exceeded the estimated chelating ability of the polyhistidine sequence, indicating a perturbation in intracellular zinc homeostasis. We discuss the possibility of using Rubisco to express foreign peptides as fusion products and to confer new properties to higher plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号