首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   14篇
  131篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   8篇
  2014年   8篇
  2013年   4篇
  2012年   12篇
  2011年   10篇
  2010年   8篇
  2009年   3篇
  2008年   4篇
  2007年   7篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   7篇
  1999年   3篇
  1998年   1篇
  1996年   3篇
  1994年   1篇
  1991年   4篇
  1988年   2篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
91.
A new soft coral species of the genus Nidalia, from seamounts to the south of the Azores Archipelago is described. The main features of Nidalia aurantia n. sp. are as following: colony torch-like, a capitulum light orange in colour, not laterally flattened, dome-shaped and not distinctly projecting beyond the stalk, an introvert with sparse sclerites transversally placed, and an anthocodial crown with 13–17 sclerite rows. The new species is compared with its closest congeners. This is the first time that a species of Nidalia has been located in the Mid-Atlantic Ocean.  相似文献   
92.
The Petunia hybrida GA-induced proteins (GIPs) belong to a large group of proteins identified in numerous plant species. These proteins share a similar C-terminal region containing 12 cysteine residues in conserved positions. To date, the function of these proteins remains unclear. We previously found that GIP1 expression coincides with cell elongation in stems and flowers and is induced by gibberellic acid (GA3). Transient expression of a GIP1:green fluorescent protein (GFP) fusion in tobacco bright yellow 2 (BY2) cells and immunoblot analyses suggest microsomal compartmentalization with possible endoplasmic reticulum (ER) localization. However, the polyclonal anti-GIP1 antibodies also reacted with proteins extracted from the cell wall. Three novel GIP homologs, GIP2, GIP4, and GIP5, were isolated. While GIP4, similar to GIP1, is putatively localized to the ER membrane, the cleavable hydrophobic N-terminal sequences of GIP2 and GIP5 suggest cell wall localization. GIP1 and GIP2 are expressed during cell elongation, whereas GIP4 and GIP5 are expressed during cell division; nevertheless, they all were induced by GA3. We generated transgenic petunia in which we repressed the putative cell wall protein GIP2. The transgenic plants exhibited late flowering and reduced stem elongation. These phenotypic alterations were found under low, but not moderate-high temperatures, suggesting functional redundancy under normal growth conditions. The expression pattern and cellular localization of GIP2, its regulation by GA, and the phenotype of the transgenic plants suggest a role in GA-mediated cell elongation and transition to flowering.  相似文献   
93.
So far, the extremely halophilic archaeon Haloferax volcanii has the best genetic tools among the archaea. However, the lack of an efficient gene knockout system for this organism has hampered further genetic studies. In this paper we describe the development of pyrE-based positive selection and counterselection systems to generate an efficient gene knockout system. The H. volacanii pyrE1 and pyrE2 genes were isolated, and the pyrE2 gene was shown to code for the physiological enzyme orotate phosphoribosyl transferase. A DeltapyrE2 strain was constructed and used to isolate deletion mutants by the following two steps: (i) integration of a nonreplicative plasmid carrying both the pyrE2 wild-type gene, as a selectable marker, and a cloned chromosomal DNA fragment containing a deletion in the desired gene; and (ii) excision of the integrated plasmid after selection with 5-fluoroorotic acid. Application of this gene knockout system is described.  相似文献   
94.
95.
Corallium rubrum taxonomy is based on morphologic criteria; little is known about its genome. We set up a rapid, easy method based on amplified fragment length polymorphism to characterize the genetic patterns of C. rubrum in an attempt to understand better the evolutionary relations between species from diverse geographic areas and to help define migration patterns. Applying this procedure to C. rubrum specimens from Spain and Italy, we identified 6 AFLP amplification fragments common to the 4 coral populations studied and 4 fragments that differentiated between these populations. Using this characterization we were able to plot a genetic identity card of this commercially harvested species, which is also a marker of pollution.  相似文献   
96.
Microbial planktonic communities (i.e. bacteria and protozoa), phytoplankton, dissolved organic carbon (DOC) and particulate organic carbon (POC) were seasonally examined at Medes Islands (Northwestern Mediterranean) to assess their variation in abundance and composition throughout the year in a near-bottom littoral ecosystem. From October 1995 to November 1996, samples were collected between two and six times per month at 0.5 m above the bottom. Mean DOC and POC values throughout the year were 2560 180 (SE) and 387 ± 35 g C l-1, respectively. All year, detrital organic carbon (detrital=total POC - live carbon) represented the main POC fraction, and mean live carbon was 24 ± 9 g C l-1. Winter and spring had maximum values of POC, and spring and summer had maximum values of DOC. Heterotrophic bacteria, with a mean abundance of 5.16 ± 0.08 x 105 cells ml-1, were the main contributor to live carbon (26 ± 7%). During winter, heterotrophic bacterial biomass decreased 40% due to a decrease in mean biovolume per cell. Synechococcus sp. and Prochlorococcus sp. abundance were 2.24 ± 0.09 x 104 and 1.05 ± 0.07 x 104 cells ml-1, respectively. However, while Synechococcus sp. were present all year, Prochlorococcus sp. were not observed from April to July. Mean phytoplankton (i.e. diatoms and dinoflagellates) abundance was 2.06 ± 0.40 x 104 cells l-1 with biomass at a maximum during the winter months, the period with the lowest temperature and the highest nutrient concentration. The size composition of live carbon showed two clearly distinct periods: from December to March, live carbon was dominated in biomass by microplankton, while from April to November, pico- and nanoplankton cells were dominant. Overall, the dynamics of the near-bottom planktonic communities was characterized by a low biomass of heterotrophic and autotrophic bacteria, phytoplankton and ciliates in contrast to previous water column studies. This pattern and the high temporal heterogeneity of the different planktonic communities are discussed in relation to the physical and chemical characteristics of the environment, as well as to the potential role that benthic communities may be exerting in the control of the near-bottom planktonic communities.   相似文献   
97.
98.
Pagès  F.  Gili  J. -M. 《Hydrobiologia》1991,216(1):355-362
The diel distribution of epipelagic siphonophores at a station off northern Namibia (18°00 S 10°30 E) was studied. This area is characterized by the mixing of surface waters of the Angola Current with the waters of the northernmost Benguela region. During the sampling period, the continuous flow of the Angola Current gave rise to a marked thermocline at ca 30 m depth. In order to study the diel vertical distribution patterns of epipelagic species under these hydrographic conditions, narrow depth horizons in the top 200 m of the water column were sampled repeatedly over a 48 h period. Thirty-four species were collected. Sphaeronectes gracilis and Chelophyes appendiculata predominated. Increasing numbers of species and individuals were observed on the second day of sampling, particularly in the layers above the thermocline. Only a few species showed an upward nocturnal migration that crossed the boundary between 2 water masses. The differences in the depth distributions of the various species were related to 3 distinct phenomena: the existence of 2 separate siphonophore populations associated with each of the 2 water masses; vertical migration by the most abundant species, which were able to cross the thermocline; and differences in patch size for the most epipelagic species.  相似文献   
99.
The inhibition of NK cell killing is mainly mediated via the interaction of NK inhibitory receptors with MHC class I proteins. In addition, we have previously demonstrated that NK cells are inhibited in a class I MHC-independent manner via homophilic carcinoembryonic Ag (CEA) cell adhesion molecules (CEACAM1)-CEACAM1 and heterophilic CEACAM1-CEA interactions. However, the cross-talk between immune effector cells and their target cells is not limited to cell interactions per se, but also involves a specific exchange of proteins. The reasons for these molecular exchanges and the functional outcome of this phenomenon are still mostly unknown. In this study, we show that NK cells rapidly and specifically acquire CEA molecules from target cells. We evaluated the role of cytotoxicity in the acquisition of CEA and demonstrated it to be mostly killing independent. We further demonstrate that CEA transfer requires a specific interaction with an unknown putative NK cell receptor and that carbohydrates are probably involved in CEA recognition and acquisition by NK cells. Functionally, the killing of bulk NK cultures was inhibited by CEA-expressing cells, suggesting that this putative receptor is an inhibitory receptor.  相似文献   
100.
In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene‐flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population‐genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene‐flow patterns. In the last decades, network theory – a branch of discrete mathematics concerned with complex interactions between discrete elements – has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population‐genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号