首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2104篇
  免费   170篇
  国内免费   1篇
  2024年   4篇
  2023年   27篇
  2022年   52篇
  2021年   135篇
  2020年   70篇
  2019年   81篇
  2018年   81篇
  2017年   63篇
  2016年   108篇
  2015年   141篇
  2014年   183篇
  2013年   157篇
  2012年   183篇
  2011年   194篇
  2010年   103篇
  2009年   79篇
  2008年   112篇
  2007年   92篇
  2006年   80篇
  2005年   86篇
  2004年   80篇
  2003年   64篇
  2002年   43篇
  2001年   3篇
  2000年   7篇
  1999年   5篇
  1998年   6篇
  1997年   9篇
  1996年   8篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1982年   1篇
  1978年   1篇
  1961年   1篇
排序方式: 共有2275条查询结果,搜索用时 15 毫秒
11.
Research across groups and methods consistently finds a gender difference in patterns of specificity of genital response; however, empirically supported mechanisms to explain this difference are lacking. The information-processing model of sexual arousal posits that automatic and controlled cognitive processes are requisite for the generation of sexual responses. Androphilic women’s gender-nonspecific response patterns may be the result of sexually-relevant cues that are common to both preferred and nonpreferred genders capturing attention and initiating an automatic sexual response, whereas men’s attentional system may be biased towards the detection and response to sexually-preferred cues only. In the present study, we used eye tracking to assess visual attention to sexually-preferred and nonpreferred cues in a sample of androphilic women and gynephilic men. Results support predictions from the information-processing model regarding gendered processing of sexual stimuli in men and women. Men’s initial attention patterns were gender-specific, whereas women’s were nonspecific. In contrast, both men and women exhibited gender-specific patterns of controlled attention, although this effect was stronger among men. Finally, measures of attention and self-reported attraction were positively related in both men and women. These findings are discussed in the context of the information-processing model and evolutionary mechanisms that may have evolved to promote gendered attentional systems.  相似文献   
12.
13.
There have been several reports that individuals with Fragile X syndrome (FXS) and animal models of FXS have communication deficits. The present study utilized two different call classification taxonomies to examine the sex‐specificity of ultrasonic vocalization (USV) production on postnatal day (PD8) in the FVB strain of Fmr1 knockout (KO) mice. One classification protocol requires the investigator to score each call by hand, while the other protocol uses an automated algorithm. Results using the hand‐scoring protocol indicated that male Fmr1 KO mice exhibited longer calls (P = .03) than wild types on PD8. Male KOs also produced fewer complex, composite, downward, short and two‐syllable call‐types, as well as more frequency steps and chevron call‐types. Female heterozygotes exhibited no significant changes in acoustic or temporal aspects of calls, yet showed significant changes in call‐type production proportions across two different classification taxonomies (P < .001). They exhibited increased production of harmonic and frequency steps calls, as well as fewer chevron, downward and short calls. According to the second high‐throughput analysis, female heterozygotes produced significantly fewer single‐type and more multiple‐type syllables, unlike male KOs that showed no changes in these aspects of syllable production. Finally, we correlated both scoring methods and found a high level of correlation between the two methods. These results contribute further knowledge of sex differences in USV calling behavior for Fmr1 heterozygote and KO mice and provide a foundation for the use of high‐throughput analysis of neonatal USVs.  相似文献   
14.
15.
Estuaries are productive ecosystems providing important habitat for a diversity of species, yet they also experience intense levels of anthropogenic development. To inform decision‐making, it is essential to understand the pathways of impacts of particular human activities, especially those that affect species such as salmon, which have high ecological, social‐cultural and economic values. Salmon systems provide an opportunity to build from the substantial body of research on responses to estuary developments and take stock of what is known. We conducted a systematic English‐language literature review on the responses of juvenile salmon to anthropogenic activities in estuaries and nearshore areas asking: what has been studied, where are the major knowledge gaps and how do stressors affect salmon? We found a substantial body of research (n = 167 studies; 1,369 comparative tests) to help understand responses of juvenile salmon to 24 activities and their 14 stressors. Across studies, 82% of the research was conducted in the eastern Pacific (Oregon and Washington, USA and British Columbia, Canada) showing a limited geographical scope. Using a semiquantitative approach to summarize the literature, including a weight‐of‐evidence metric, we found a range of results from low to moderate–high confidence in the consequences of the stressors. For example, we found moderate–high confidence in the negative impacts of pollutants and sea lice and moderate confidence in negative impacts from connectivity loss and changes in flow. Our results suggest that overall, multiple anthropogenic activities cause negative impacts across ecological scales. However, our results also reveal knowledge gaps resulting from minimal research on particular species (e.g. sockeye salmon), regions (e.g. Atlantic) or stressors (e.g. entrainment) that would be expedient areas for future research. With estuaries acting as a nexus of biological and societal importance and hotspots of ongoing development, the insights gained here can contribute to informed decision‐making.  相似文献   
16.
Woody plant encroachment is a major land management issue. Woody removal often aims to restore the original grassy ecosystem, but few studies have assessed the role of woody removal on ecosystem functions and biodiversity at global scales. We collected data from 140 global studies and evaluated how different woody plant removal methods affected biodiversity (plant and animal diversity) and ecosystem functions (plant production, hydrological function, soil carbon) across global rangelands. Our results indicate that the impact of removal is strongly context dependent, varying with the specific response variable, removal method, and traits of the target species. Over all treatments, woody plant removal increased grass biomass and total groundstorey diversity. Physical and chemical removal methods increased grass biomass and total groundstorey biomass (i.e., non‐woody plants, including grass biomass), but burning reduced animal diversity. The impact of different treatment methods declined with time since removal, particularly for total groundstorey biomass. Removing pyramid‐shaped woody plants increased total groundstorey biomass and hydrological function but reduced total groundstorey diversity. Environmental context (e.g., aridity and soil texture) indirectly controlled the effect of removal on biomass and biodiversity by influencing plant traits such as plant shape, allelopathic, or roots types. Our study demonstrates that a one‐size‐fits‐all approach to woody plant removal is not appropriate, and that consideration of woody plant identity, removal method, and environmental context is critical for optimizing removal outcomes. Applying this knowledge is fundamental for maintaining diverse and functional rangeland ecosystems as we move toward a drier and more variable climate.  相似文献   
17.
The spatial arrangement of perennial vegetation is critical for ecosystem function in drylands. While much is known about how vegetation patches respond to grazing and abiotic conditions, the size dynamics of individual plants is mostly limited to theoretical studies. We measured the size distribution (mean, variance, skewness) and density of individual grasses, and grass species composition at 451 sites spanning a range of grazing intensities across three broad vegetation communities in semi-arid eastern Australia. We assessed the relative role of grazing by livestock (cattle and sheep), native (kangaroos) and introduced (rabbits) free ranging herbivores, and several environmental measures (productivity, diversity, composition and groundstorey plant cover) on the size distribution and density of individual grasses. We found mean grass size and density were more sensitive to shifts in grazing intensity and environmental conditions than size variance or the frequency of the smallest individuals (skewness), and shifts were mostly driven by site productivity and cattle and kangaroo grazing. Sheep grazing only reduced mean grass size, and rabbit grazing had no consistent effects. Importantly, we found that site productivity and species composition altered the impacts of grazing on grass density and size distribution. For example, increasing cattle grazing led to larger grasses in low productivity sites. It also led to larger, denser, more variable-sized grasses among grass species from sites with finer soil texture. Increasing kangaroo grazing led to smaller, denser individuals among grass species from sites with coarse soil texture. At high diversity sites kangaroo grazing led to denser, more homogenised grass sizes with a lower frequency of small individuals. Understanding the in situ response of individual plant sizes gives us insights into the processes driving shifts in perennial vegetation patchiness, improving our ability to predict how the spatial arrangement of ecosystems might change under global change scenarios.  相似文献   
18.
Pseudomonas aeruginosa has a high potential for developing resistance to multiple antibiotics. The gene (glnS) encoding glutaminyl‐tRNA synthetase (GlnRS) from P. aeruginosa was cloned and the resulting protein characterized. GlnRS was kinetically evaluated and the KM and kcatobs, governing interactions with tRNA, were 1.0 μM and 0.15 s?1, respectively. The crystal structure of the α2 form of P. aeruginosa GlnRS was solved to 1.9 Å resolution. The amino acid sequence and structure of P. aeruginosa GlnRS were analyzed and compared to that of GlnRS from Escherichia coli. Amino acids that interact with ATP, glutamine, and tRNA are well conserved and structure overlays indicate that both GlnRS proteins conform to a similar three‐dimensional structure. GlnRS was developed into a screening platform using scintillation proximity assay technology and used to screen ~2,000 chemical compounds. Three inhibitory compounds were identified and analyzed for enzymatic inhibition as well as minimum inhibitory concentrations against clinically relevant bacterial strains. Two of the compounds, BM02E04 and BM04H03, were selected for further studies. These compounds displayed broad‐spectrum antibacterial activity and exhibited moderate inhibitory activity against mutant efflux deficient strains of P. aeruginosa and E. coli. Growth of wild‐type strains was unaffected, indicating that efflux was likely responsible for the lack of sensitivity. The global mode of action was determined using time‐kill kinetics. BM04H03 did not inhibit the growth of human cell cultures at any concentration and BM02E04 only inhibit cultures at the highest concentration tested (400 μg/ml). In conclusion, GlnRS from P. aeruginosa is shown to have a structure similar to that of E. coli GlnRS and two natural product compounds were identified as inhibitors of P. aeruginosa GlnRS with the potential for utility as lead candidates in antibacterial drug development in a time of increased antibiotic resistance.  相似文献   
19.
The Ptr1 (Pseudomonas tomato race 1) locus in Solanum lycopersicoides confers resistance to strains of Pseudomonas syringae pv. tomato expressing AvrRpt2 and Ralstonia pseudosolanacearum expressing RipBN. Here we describe the identification and phylogenetic analysis of the Ptr1 gene. A single recombinant among 585 F2 plants segregating for the Ptr1 locus was discovered that narrowed the Ptr1 candidates to eight nucleotide‐binding leucine‐rich repeat protein (NLR)‐encoding genes. From analysis of the gene models in the S. lycopersicoides genome sequence and RNA‐Seq data, two of the eight genes emerged as the strongest candidates for Ptr1. One of these two candidates was found to encode Ptr1 based on its ability to mediate recognition of AvrRpt2 and RipBN when it was transiently expressed with these effectors in leaves of Nicotiana glutinosa. The ortholog of Ptr1 in tomato and in Solanum pennellii is a pseudogene. However, a functional Ptr1 ortholog exists in Nicotiana benthamiana and potato, and both mediate recognition of AvrRpt2 and RipBN. In apple and Arabidopsis, recognition of AvrRpt2 is mediated by the Mr5 and RPS2 proteins, respectively. Phylogenetic analysis places Ptr1 in a distinct clade compared with Mr5 and RPS2, and it therefore appears to have arisen by convergent evolution for recognition of AvrRpt2.  相似文献   
20.
The Canada lynx (Lynx canadensis) and the bobcat (Lynx rufus) are closely related species with overlap at their range peripheries, but the factors that limit each species and the interactions between them are not well understood. Habitat selection is a hierarchical process, in which selection at higher orders (geographic range, home range) may constrain selection at lower orders (within the home range). Habitat selection at a very fine scale within the home range has been less studied for both lynx and bobcat compared to selection at broader spatiotemporal scales. To compare this fourth‐order habitat selection by the two species in an area of sympatry, we tracked lynx and bobcat during the winters of 2017 and 2018 on the north shore of Lake Huron, Ontario. We found that both lynx and bobcat selected shallower snow, higher snowshoe hare abundance, and higher amounts of coniferous forest at the fourth order. However, the two species were spatially segregated at the second order, and lynx were found in areas with deeper snow, more snowshoe hare, and more coniferous forest. Taken together, our findings demonstrate that the lynx and bobcat select different resources at the second order, assorting along an environmental gradient in the study area, and that competition is unlikely to be occurring between the two species at finer scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号