首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   703篇
  免费   56篇
  2021年   4篇
  2019年   7篇
  2018年   10篇
  2017年   7篇
  2016年   15篇
  2015年   20篇
  2014年   27篇
  2013年   33篇
  2012年   28篇
  2011年   28篇
  2010年   42篇
  2009年   36篇
  2008年   34篇
  2007年   37篇
  2006年   32篇
  2005年   27篇
  2004年   28篇
  2003年   19篇
  2002年   16篇
  2001年   21篇
  2000年   17篇
  1999年   15篇
  1998年   16篇
  1997年   17篇
  1996年   9篇
  1995年   12篇
  1994年   7篇
  1993年   10篇
  1992年   13篇
  1991年   10篇
  1989年   4篇
  1988年   12篇
  1987年   5篇
  1986年   3篇
  1985年   13篇
  1984年   5篇
  1983年   4篇
  1982年   17篇
  1981年   3篇
  1979年   4篇
  1977年   7篇
  1976年   9篇
  1975年   4篇
  1973年   8篇
  1972年   3篇
  1971年   3篇
  1951年   4篇
  1946年   4篇
  1923年   2篇
  1921年   3篇
排序方式: 共有759条查询结果,搜索用时 15 毫秒
171.
Many biological quantities cannot be measured directly but rather need to be estimated from models. Estimates from models are statistical objects with variance and, when derived simultaneously, covariance. It is well known that their variance–covariance (VC) matrix must be considered in subsequent analyses. Although it is always preferable to carry out the proposed analyses on the raw data themselves, a two‐step approach cannot always be avoided. This situation arises when the parameters of a multinomial must be regressed against a covariate. The Delta method is an appropriate and frequently recommended way of deriving variance approximations of transformed and correlated variables. Implementing the Delta method is not trivial, and there is a lack of a detailed information on the procedure in the literature for complex situations such as those involved in constraining the parameters of a multinomial distribution. This paper proposes a how‐to guide for calculating the correct VC matrices of dependant estimates involved in multinomial distributions and how to use them for testing the effects of covariates in post hoc analyses when the integration of these analyses directly into a model is not possible. For illustrative purpose, we focus on variables calculated in capture–recapture models, but the same procedure can be applied to all analyses dealing with correlated estimates with multinomial distribution and their variances and covariances.  相似文献   
172.
173.
174.
175.
176.
Concussion can occur from a variety of events (falls to ice, collisions etc) in ice hockey, and as a result it is important to identify how these different impact sources affect the relationship between impact kinematics and strain that has been found to be associated to this injury. The purpose of this research was to examine the relationship between kinematic variables and strain in the brain for impact sources that led to concussion in ice hockey. Video of professional ice hockey games was analyzed for impacts that resulted in reported clinically diagnosed concussions. The impacts were reconstructed using physical models/ATDs to determine the impact kinematics and then simulated using finite element modelling to determine maximum principal strain and cumulative strain damage measure. A stepwise linear regression was conducted between linear acceleration, change in linear velocity, rotational acceleration, rotational velocity, and strain response in the brain. The results for the entire dataset was that rotational acceleration had the highest r2 value for MPS (r2 = 0.581) and change in rotational velocity for cumulative strain damage measure (r2 = 450). When the impact source (shoulder, elbow, boards, or ice impacts) was isolated the rotational velocity and acceleration r2 value increased, indicating that when evaluating the relationships between kinematics and strain based metrics the characteristics of the impact is an important factor. These results suggest that rotational measures should be included in future standard methods and helmet innovation and design in ice hockey as they have the highest association with strain in the brain tissues.  相似文献   
177.
178.

Background  

The embryonic definitive endoderm (DE) gives rise to organs of the gastrointestinal and respiratory tract including the liver, pancreas and epithelia of the lung and colon. Understanding how DE progenitor cells generate these tissues is critical to understanding the cause of visceral organ disorders and cancers, and will ultimately lead to novel therapies including tissue and organ regeneration. However, investigation into the molecular mechanisms of DE differentiation has been hindered by the lack of early DE-specific markers.  相似文献   
179.

Background  

Structural properties of proteins such as secondary structure and solvent accessibility contribute to three-dimensional structure prediction, not only in the ab initio case but also when homology information to known structures is available. Structural properties are also routinely used in protein analysis even when homology is available, largely because homology modelling is lower throughput than, say, secondary structure prediction. Nonetheless, predictors of secondary structure and solvent accessibility are virtually always ab initio.  相似文献   
180.

Background  

Tandem mass spectrometry followed by database search is currently the predominant technology for peptide sequencing in shotgun proteomics experiments. Most methods compare experimentally observed spectra to the theoretical spectra predicted from the sequences in protein databases. There is a growing interest, however, in comparing unknown experimental spectra to a library of previously identified spectra. This approach has the advantage of taking into account instrument-dependent factors and peptide-specific differences in fragmentation probabilities. It is also computationally more efficient for high-throughput proteomics studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号