首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4755篇
  免费   469篇
  国内免费   2篇
  2021年   49篇
  2019年   45篇
  2018年   48篇
  2017年   62篇
  2016年   79篇
  2015年   143篇
  2014年   154篇
  2013年   210篇
  2012年   268篇
  2011年   249篇
  2010年   172篇
  2009年   142篇
  2008年   217篇
  2007年   221篇
  2006年   192篇
  2005年   230篇
  2004年   197篇
  2003年   186篇
  2002年   173篇
  2001年   130篇
  2000年   132篇
  1999年   108篇
  1998年   65篇
  1997年   58篇
  1996年   67篇
  1995年   61篇
  1994年   54篇
  1993年   47篇
  1992年   80篇
  1991年   83篇
  1990年   73篇
  1989年   66篇
  1988年   55篇
  1987年   44篇
  1986年   50篇
  1985年   55篇
  1984年   44篇
  1983年   45篇
  1982年   36篇
  1981年   47篇
  1980年   35篇
  1979年   42篇
  1978年   34篇
  1977年   40篇
  1976年   43篇
  1975年   33篇
  1974年   45篇
  1973年   34篇
  1972年   35篇
  1970年   37篇
排序方式: 共有5226条查询结果,搜索用时 31 毫秒
211.
A putative driver of global amphibian decline is the panzootic chytrid fungus Batrachochytrium dendrobatidis (Bd). While Bd has been documented across continental Africa, its distribution in West Africa remains ambiguous. We tested 793 West African amphibians (one caecilian and 61 anuran species) for the presence of Bd. The samples originated from seven West African countries - Bénin, Burkina Faso, Côte d''Ivoire, Ghana, Guinea, Liberia, Sierra Leone - and were collected from a variety of habitats, ranging from lowland rainforests to montane forests, montane grasslands to humid and dry lowland savannahs. The species investigated comprised various life-history strategies, but we focused particularly on aquatic and riparian species. We used diagnostic PCR to screen 656 specimen swabs and histology to analyse 137 specimen toe tips. All samples tested negative for Bd, including a widespread habitat generalist Hoplobatrachus occipitalis which is intensively traded on the West African food market and thus could be a potential dispersal agent for Bd. Continental fine-grained (30 arc seconds) environmental niche models suggest that Bd should have a broad distribution across West Africa that includes most of the regions and habitats that we surveyed. The surprising apparent absence of Bd in West Africa indicates that the Dahomey Gap may have acted as a natural barrier. Herein we highlight the importance of this Bd-free region of the African continent - especially for the long-term conservation of several threatened species depending on fast flowing forest streams (Conraua alleni (“Vulnerable”) and Petropedetes natator (“Near Threatened”)) as well as the “Critically Endangered” viviparous toad endemic to the montane grasslands of Mount Nimba (Nimbaphrynoides occidentalis).  相似文献   
212.
Omics-based technology platforms have made new kinds of cancer profiling tests feasible. There are several valuable examples in clinical practice, and many more under development. A concerted, transparent process of discovery with lock-down of candidate assays and classifiers and clear specification of intended clinical use is essential. The Institute of Medicine has now proposed a three-stage scheme of confirming and validating analytical findings, validating performance on clinical specimens, and demonstrating explicit clinical utility for an approvable test (Micheel et al., Evolution of translational omics: lessons learned and path forward, 2012).  相似文献   
213.
The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7–30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides.  相似文献   
214.
215.
Recent studies have detected phylogenetic signals in pathogen–host networks for both soil‐borne and leaf‐infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next‐generation high‐throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK, rbcL, atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host–fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant–fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant–fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.  相似文献   
216.
Identity determinants are essential for the accurate recognition of transfer RNAs by aminoacyl-tRNA synthetases. To date, arginine determinants in the yeast Saccharomyces cerevisiae have been identified exclusively in vitro and only on a limited number of tRNA Arginine isoacceptors. In the current study, we favor a full cellular approach and expand the investigation of arginine determinants to all four tRNA Arg isoacceptors. More precisely, this work scrutinizes the relevance of the tRNA nucleotides at position 20, 35 and 36 in the yeast arginylation reaction. We built 21 mutants by site-directed mutagenesis and tested their functionality in YAL5, a previously engineered yeast knockout deficient for the expression of tRNA Arg CCG. Arginylation levels were also monitored using Northern blot. Our data collected in vivo correlate with previous observations. C35 is the prominent arginine determinant followed by G36 or U36 (G/U36). In addition, although there is no major arginine determinant in the D loop, the recognition of tRNA Arg ICG relies to some extent on the nucleotide at position 20. This work refines the existing model for tRNA Arg recognition. Our observations indicate that yeast Arginyl-tRNA synthetase (yArgRS) relies on distinct mechanisms to aminoacylate the four isoacceptors. Finally, according to our refined model, yArgRS is able to accommodate tRNA Arg scaffolds presenting N34, C/G35 and G/A/U36 anticodons while maintaining specificity. We discuss the mechanistic and potential physiological implications of these findings.  相似文献   
217.

Background

Improved tuberculosis control and the need to contain the spread of drug-resistant strains provide a strong rationale for exploring tuberculosis transmission dynamics at the population level. Whole-genome sequencing provides optimal strain resolution, facilitating detailed mapping of potential transmission pathways.

Methods

We sequenced 22 isolates from a Mycobacterium tuberculosis cluster in New South Wales, Australia, identified during routine 24-locus mycobacterial interspersed repetitive unit typing. Following high-depth paired-end sequencing using the Illumina HiSeq 2000 platform, two independent pipelines were employed for analysis, both employing read mapping onto reference genomes as well as de novo assembly, to control biases in variant detection. In addition to single-nucleotide polymorphisms, the analyses also sought to identify insertions, deletions and structural variants.

Results

Isolates were highly similar, with a distance of 13 variants between the most distant members of the cluster. The most sensitive analysis classified the 22 isolates into 18 groups. Four of the isolates did not appear to share a recent common ancestor with the largest clade; another four isolates had an uncertain ancestral relationship with the largest clade.

Conclusion

Whole genome sequencing, with analysis of single-nucleotide polymorphisms, insertions, deletions, structural variants and subpopulations, enabled the highest possible level of discrimination between cluster members, clarifying likely transmission pathways and exposing the complexity of strain origin. The analysis provides a basis for targeted public health intervention and enhanced classification of future isolates linked to the cluster.  相似文献   
218.
219.
Given immunity’s general role in the organism’s economy—both in terms of its internal environment as well as mediating its external relations—immune theory has expanded its traditional formulation of preserving individual autonomy to one that includes accounting for nutritional processes and symbiotic relationships that require immune tolerance. When such a full ecological alignment is adopted, the immune system becomes the mediator of both defensive and assimilative environmental intercourse, where a balance of immune rejection and tolerance governs the complex interactions of the organism’s ecological relationships. Accordingly, immunology, which historically had affiliated with the biology of individuals, now becomes a science concerned with the biology of communities. With this translocation, the ontological basis of the organism is undergoing a profound change. Indeed, the recent recognition of the ubiquity of symbiosis has challenged the traditional notions of biological individuality and requires a shift in the metaphysics undergirding biology, in which a philosophy of the organism must be characterized by ecological dialectics “all-the-way-down.”  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号