首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4755篇
  免费   469篇
  国内免费   2篇
  2021年   49篇
  2019年   45篇
  2018年   48篇
  2017年   62篇
  2016年   79篇
  2015年   143篇
  2014年   154篇
  2013年   210篇
  2012年   268篇
  2011年   249篇
  2010年   172篇
  2009年   142篇
  2008年   217篇
  2007年   221篇
  2006年   192篇
  2005年   230篇
  2004年   197篇
  2003年   186篇
  2002年   173篇
  2001年   130篇
  2000年   132篇
  1999年   108篇
  1998年   65篇
  1997年   58篇
  1996年   67篇
  1995年   61篇
  1994年   54篇
  1993年   47篇
  1992年   80篇
  1991年   83篇
  1990年   73篇
  1989年   66篇
  1988年   55篇
  1987年   44篇
  1986年   50篇
  1985年   55篇
  1984年   44篇
  1983年   45篇
  1982年   36篇
  1981年   47篇
  1980年   35篇
  1979年   42篇
  1978年   34篇
  1977年   40篇
  1976年   43篇
  1975年   33篇
  1974年   45篇
  1973年   34篇
  1972年   35篇
  1970年   37篇
排序方式: 共有5226条查询结果,搜索用时 31 毫秒
191.
High CO2 concentrations stimulate net photosynthesis by increasing CO2 substrate availability for Rubisco, simultaneously suppressing photorespiration. Previously, we reported that silencing the chloroplast vesiculation (cv) gene in rice increased source fitness, through the maintenance of chloroplast stability and the expression of photorespiration-associated genes. Because high atmospheric CO2 conditions diminished photorespiration, we tested whether CV silencing might be a viable strategy to improve the effects of high CO2 on grain yield and N assimilation in rice. Under elevated CO2, OsCV expression was induced, and OsCV was targeted to peroxisomes where it facilitated the removal of OsPEX11-1 from the peroxisome and delivered it to the vacuole for degradation. This process correlated well with the reduction in the number of peroxisomes, the decreased catalase activity and the increased H2O2 content in wild-type plants under elevated CO2. At elevated CO2, CV-silenced rice plants maintained peroxisome proliferation and photorespiration and displayed higher N assimilation than wild-type plants. This was supported by higher activity of enzymes involved in NO3 and NH4+ assimilation and higher total and seed protein contents. Co-immunoprecipitation of OsCV-interacting proteins suggested that, similar to its role in chloroplast protein turnover, OsCV acted as a scaffold, binding peroxisomal proteins.  相似文献   
192.
BackgroundSoil-transmitted helminth (STH) infections are still prevalent in Indonesia, with roughly one-third of infected population being preschool-age children (PSC), which are generally at higher risk of morbidity such as malnutrition and anemia. This study aimed to investigate the association of STH infections with nutritional status and anemia among PSC in Nangapanda subdistrict, Ende, East Nusa Tenggara.MethodsA cross-sectional survey involving PSC ranging from 12 to 59 months old from Nangapanda subdistrict, Ende district, East Nusa Tenggara was performed. Socio-demographic, breastfeeding, and complementary feeding information was obtained from structured questionnaires, while nutritional and anemia status was determined from anthropometry and hemoglobin measurements, respectively. Anthropometric z-scores were calculated based on the World Health Organization 2006 standards and stool samples were examined using Kato-Katz method.ResultsA total of 393 PSC randomly selected from 22 villages were examined. The prevalence of underweight, stunting, wasting, and anemia were 33.1%, 40.2%, 17.1%, and 60.3%, respectively. STH infection, predominated by Ascaris lumbricoides, was found in 160 (58.8%) PSC. Single STH infection, but not multiple infection, was independently associated with a lower risk of anemia (odds ratio [OR] 0.320, 95% confidence interval [CI]: 0.126–0.809, p = 0.016). Similar association with anemia was also found on mild STH infection (OR 0.318 [95% CI: 0.114–0.887], p = 0.029). On the other hand, younger children were found to have a higher risk of anemia and stunting. None of the examined variables were independently associated with underweight and wasting.ConclusionSTH infection as well as anemia and malnutrition were prevalent in this region. However in this study, current STH infections seemed to have minimal negative impact on children’s nutritional status.  相似文献   
193.
194.
As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems.  相似文献   
195.
196.
Microbial biofilms are notably recalcitrant towards treatment with antibiotics, biocides or disinfectants that would adequately control the same organisms growing in planktonic mode. Much of this resistance has been attributed to an organisation of the biofilm cells within exopolymer matrices. Whilst such exopolymers are unlikely to hinder the diffusion and access of antimicrobial agents to the underlying cells, they will chemically quench reactive biocides such as chlorine and peroxygens, and bind highly charged antibiotics, such as tobramycin and gentamycin, thereby providing some protection to the more deep lying cells. Extracellular enzymes, bound within the glycocalyx and able to degrade the treatment agents, will further reduce the access of susceptible compounds. Diffusion limitation however, is unlikely to be the sole moderator of the resistance properties of microbial biofilms. In addition, gradients of oxygen and nutrients established across the biofilm community will cause growth rates to be much reduced at points remoted from the accessible nutrient. Slow growth rates, and the associated induction of stringent responses further contribute towards this resistance. Finally, there have been recent demonstrations that attachment of microorganisms to surfaces promotes the expression of genes that are not normally expressed in planktonic culture. Whether or not the expression of such genes alters the phenotype in a manner which alters the response of the cells to antimicrobial agents remains to be demonstrated.  相似文献   
197.
The notorious biofouling organism Dreissena polymorpha (the zebra mussel) attaches to a variety of surfaces using a byssus, a series of protein threads that connect the animal to adhesive plaques secreted onto hard substrata. Here, the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize the composition of different regions of the byssus is reported. All parts of the byssus show mass peaks corresponding to small proteins in the range of 3.7–7 kDa, with distinctive differences between different regions. Indeed, spectra from thread and plaques are almost completely non-overlapping. In addition, several peaks were identified that are unique to the interfacial region of the plaque, and therefore likely represent specialized adhesive proteins. These results indicate a high level of control over the distribution of proteins, presumably with different functions, in the byssus of this freshwater species.  相似文献   
198.
Plant biomass is central to the carbon cycle and to environmentally sustainable industries exemplified by the biofuel sector. Plant cell wall degrading enzymes generally contain noncatalytic carbohydrate binding modules (CBMs) that fulfil a targeting function, which enhances catalysis. CBMs that bind β-glucan chains often display broad specificity recognizing β1,4-glucans (cellulose), β1,3-β1,4-mixed linked glucans and xyloglucan, a β1,4-glucan decorated with α1,6-xylose residues, by targeting structures common to the three polysaccharides. Thus, CBMs that recognize xyloglucan target the β1,4-glucan backbone and only accommodate the xylose decorations. Here we show that two closely related CBMs, CBM65A and CBM65B, derived from EcCel5A, a Eubacterium cellulosolvens endoglucanase, bind to a range of β-glucans but, uniquely, display significant preference for xyloglucan. The structures of the two CBMs reveal a β-sandwich fold. The ligand binding site comprises the β-sheet that forms the concave surface of the proteins. Binding to the backbone chains of β-glucans is mediated primarily by five aromatic residues that also make hydrophobic interactions with the xylose side chains of xyloglucan, conferring the distinctive specificity of the CBMs for the decorated polysaccharide. Significantly, and in contrast to other CBMs that recognize β-glucans, CBM65A utilizes different polar residues to bind cellulose and mixed linked glucans. Thus, Gln106 is central to cellulose recognition, but is not required for binding to mixed linked glucans. This report reveals the mechanism by which β-glucan-specific CBMs can distinguish between linear and mixed linked glucans, and show how these CBMs can exploit an extensive hydrophobic platform to target the side chains of decorated β-glucans.  相似文献   
199.
Amyloid β-peptide (Aβ) pathology is an invariant feature of Alzheimer disease, preceding any detectable clinical symptoms by more than a decade. To this end, we seek to identify agents that can reduce Aβ levels in the brain via novel mechanisms. We found that (20S)-Rg3, a triterpene natural compound known as ginsenoside, reduced Aβ levels in cultured primary neurons and in the brains of a mouse model of Alzheimer disease. The (20S)-Rg3 treatment induced a decrease in the association of presenilin 1 (PS1) fragments with lipid rafts where catalytic components of the γ-secretase complex are enriched. The Aβ-lowering activity of (20S)-Rg3 directly correlated with increased activity of phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that mediates the rate-limiting step in phosphatidylinositol 4,5-bisphosphate synthesis. PI4KIIα overexpression recapitulated the effects of (20S)-Rg3, whereas reduced expression of PI4KIIα abolished the Aβ-reducing activity of (20S)-Rg3 in neurons. Our results substantiate an important role for PI4KIIα and phosphoinositide modulation in γ-secretase activity and Aβ biogenesis.  相似文献   
200.
Thrips of the genus Dunatothrips (Thysanoptera: Phlaeothripidae) construct domiciles by tying phyllodes of Australian Acacia trees together with silk‐like glue. Females often co‐found domiciles (pleometrosis), an apparently cooperative behaviour that potentially provides insights into social evolution. However, little is known about their basic natural history, limiting the scope for testable predictions. Here, we address this crucial prerequisite step by investigating some key outstanding questions in the most common species, D. aneurae, on its host, Acacia aneura. We detail distribution in space and time, mating, dispersal, domicile building and defence. Dunatothrips aneurae was distributed in loosely reproductively synchronized patches, and tended to prefer east‐facing, terminal phyllodes on thin‐phyllode A. aneura varieties. Mature domiciles contained middens, concentrated areas of waste, suggesting active maintenance of domiciles and the potential for the division of labour. We observed inbreeding and outbreeding. Dunatothrips aneurae males engaged in short, truncated matings with sisters before dispersing locally, mating with females in nearby immature domiciles; longer distance dispersal, although it must happen, is still undocumented. Males and females mated multiply. Lone females required male presence to initiate domiciles, constructed them without male help and lost wings on nesting by abscission. Silk production occurred well before egg laying. Aggression or defence appeared to be entirely absent. Taken together, these observations suggest that research into co‐founding behaviour should focus on: (1) local crowding; (2) lack of aggression; and (3) potential division of labour with respect to egg production, silk production and domicile maintenance. These results should provide a springboard for questions on the potential evolution of cooperation in this species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 802‐816.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号