全文获取类型
收费全文 | 370篇 |
免费 | 49篇 |
专业分类
419篇 |
出版年
2023年 | 4篇 |
2022年 | 3篇 |
2021年 | 14篇 |
2020年 | 7篇 |
2019年 | 7篇 |
2018年 | 11篇 |
2017年 | 9篇 |
2016年 | 6篇 |
2015年 | 23篇 |
2014年 | 29篇 |
2013年 | 18篇 |
2012年 | 32篇 |
2011年 | 28篇 |
2010年 | 19篇 |
2009年 | 18篇 |
2008年 | 25篇 |
2007年 | 22篇 |
2006年 | 17篇 |
2005年 | 13篇 |
2004年 | 18篇 |
2003年 | 19篇 |
2002年 | 9篇 |
2001年 | 8篇 |
2000年 | 7篇 |
1999年 | 4篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1989年 | 3篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1985年 | 6篇 |
1984年 | 2篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 3篇 |
1978年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有419条查询结果,搜索用时 15 毫秒
101.
Norberg E Karlsson M Korenovska O Szydlowski S Silberberg G Uhlén P Orrenius S Zhivotovsky B 《The EMBO journal》2010,29(22):3869-3878
Cellular calcium uptake is a controlled physiological process mediated by multiple ion channels. The exposure of cells to either one of the protein kinase C (PKC) inhibitors, staurosporine (STS) or PKC412, can trigger Ca2+ influx leading to cell death. The precise molecular mechanisms regulating these events remain elusive. In this study, we report that the PKC inhibitors induce a prolonged Ca2+ import through hyperpolarization‐activated cyclic nucleotide‐gated channel 2 (HCN2) in lung carcinoma cells and in primary culture of cortical neurons, sufficient to trigger apoptosis‐inducing factor (AIF)‐mediated apoptosis. Downregulation of HCN2 prevented the drug‐induced Ca2+ increase and subsequent apoptosis. Importantly, the PKC inhibitors did not cause Ca2+ entry into HEK293 cells, which do not express the HCN channels. However, introduction of HCN2 sensitized them to STS/PKC412‐induced apoptosis. Mutagenesis of putative PKC phosphorylation sites within the C‐terminal domain of HCN2 revealed that dephosphorylation of Thr549 was critical for the prolonged Ca2+ entry required for AIF‐mediated apoptosis. Our findings demonstrate a novel role for the HCN2 channel by providing evidence that it can act as an upstream regulator of cell death triggered by PKC inhibitors. 相似文献
102.
Jangsun Hwang Sangsoo Kim Youngmin Seo Kyungwoo Lee Chanhwi Park Yonghyun Choi Dasom Kim Assaf A. Gilad Jonghoon Choi 《Biotechnology and Bioprocess Engineering》2018,23(3):271-277
Sea bass can regulate the concentration of Na+, K+, and Cl-, among other ions, in their blood, skin, gills, and kidney. Therefore, the salinity of the water does not have a great influence on their metabolism, and sea bass can live in both sea and freshwater in accordance with the salt concentration. Most salinity control occurs in the gills, primarily through the control of chloride cells present there. The concentration of ions in the blood is controlled by the cotransporter Na+ / K+ / 2Cl- (NKCC) in the chloride cell, and the subunits of Na+ / K+ ATPase (NKA) function to maintain homeostasis. The expression of NKA is regulated by subunits of the protein FXYD, allowing the sea bass to survive in compliance with the salinity. In this way, it is possible for sea bass to live in sea and freshwater by controlling the salinity of its body using functions of various channels, proteins, and genes present in the chloride cells of sea bass. In this study, we investigated recent studies of salt control mechanisms in sea bass and their application. 相似文献
103.
Michal Gropp Vitali Shilo Gilad Vainer Miri Gov Yaniv Gil Hanita Khaner Limor Matzrafi Maria Idelson Juri Kopolovic Naomi B. Zak Benjamin E. Reubinoff 《PloS one》2012,7(9)
Teratoma tumor formation is an essential criterion in determining the pluripotency of human pluripotent stem cells. However, currently there is no consistent protocol for assessment of teratoma forming ability. Here we present detailed characterization of a teratoma assay that is based on subcutaneous co-transplantation of defined numbers of undifferentiated human embryonic stem cells (hESCs) with mitotically inactivated feeder cells and Matrigel into immunodeficient mice. The assay was highly reproducible and 100% efficient when 100,000 hESCs were transplanted. It was sensitive, promoting teratoma formation after transplantation of 100 hESCs, though larger numbers of animals and longer follow-up were required. The assay could detect residual teratoma forming cells within differentiated hESC populations however its sensitivity was decreased in the presence of differentiated cells. Our data lay the foundation, for standardization of a teratoma assay for pluripotency analysis. The assay can also be used for bio-safety analysis of pluripotent stem cell-derived differentiated progeny. 相似文献
104.
Ypt and Rab GTPases: insight into functions through novel interactions. 总被引:23,自引:0,他引:23
N Segev 《Current opinion in cell biology》2001,13(4):500-511
Ypt/Rab GTPases are key regulators of vesicular transport in eukaryotic cells. During the past two years, a number of new Ypt/Rab-interacting proteins have been identified and shown to serve as either upstream regulators or downstream effectors. Proteins that interact with these regulators and effectors of Ypt/Rabs have also been identified, and together they provide new insights into Ypt/Rab mechanisms of action. The picture that emerges from these studies suggests that Ypt/Rabs function in multiple and diverse aspects of vesicular transport. In addition, not only are Ypt/Rabs highly conserved, but their functions and interactions are as well. Interestingly, crosstalk among Ypt/Rabs and between Ypt/Rabs and other signaling factors, suggest the possibility of coordination of the individual vesicular transport steps and of the protein transport machinery with other cellular processes. 相似文献
105.
Bourguignon LY Singleton PA Diedrich F Stern R Gilad E 《The Journal of biological chemistry》2004,279(26):26991-27007
We have explored CD44 (a hyaluronan (HA) receptor) interaction with a Na(+)-H(+) exchanger (NHE1) and hyaluronidase-2 (Hyal-2) during HA-induced cellular signaling in human breast tumor cells (MDA-MB-231 cell line). Immunological analyses demonstrate that CD44s (standard form) and two signaling molecules (NHE1 and Hyal-2) are closely associated in a complex in MDA-MB-231 cells. These three proteins are also significantly enriched in cholesterol and ganglioside-containing lipid rafts, characterized as caveolin and flotillin-rich plasma membrane microdomains. The binding of HA to CD44 activates Na(+)-H(+) exchange activity which, in turn, promotes intracellular acidification and creates an acidic extracellular matrix environment. This leads to Hyal-2-mediated HA catabolism, HA modification, and cysteine proteinase (cathepsin B) activation resulting in breast tumor cell invasion. In addition, we have observed the following: (i) HA/CD44-activated Rho kinase (ROK) mediates NHE1 phosphorylation and activity, and (ii) inhibition of ROK or NHE1 activity (by treating cells with a ROK inhibitor, Y27632, or NHE1 blocker, S-(N-ethyl-N-isopropyl) amiloride, respectively) blocks NHE1 phosphorylation/Na(+)-H(+) exchange activity, reduces intracellular acidification, eliminates the acidic environment in the extracellular matrix, and suppresses breast tumor-specific behaviors (e.g. Hyal-2-mediated HA modification, cathepsin B activation, and tumor cell invasion). Finally, down-regulation of CD44 or Hyal-2 expression (by treating cells with CD44 or Hyal-2-specific small interfering RNAs) not only inhibits HA-mediated CD44 signaling (e.g. ROK-mediated Na(+)-H(+) exchanger reaction and cellular pH changes) but also impairs oncogenic events (e.g. Hyal-2 activity, hyaluronan modification, cathepsin B activation, and tumor cell invasion). Taken together, our results suggest that CD44 interaction with a ROK-activated NHE1 (a Na(+)-H(+) exchanger) in cholesterol/ganglioside-containing lipid rafts plays a pivotal role in promoting intracellular/extracellular acidification required for Hyal-2 and cysteine proteinase-mediated matrix degradation and breast cancer progression. 相似文献
106.
Bachrach G Haake SK Glick A Hazan R Naor R Andersen RN Kolenbrander PE 《Applied and environmental microbiology》2004,70(12):6957-6962
Fusobacterium nucleatum is an important oral anaerobic pathogen involved in periodontal and systemic infections. Studies of the molecular mechanisms involved in fusobacterial virulence and adhesion have been limited by lack of systems for efficient genetic manipulation. Plasmids were isolated from eight strains of F. nucleatum. The smallest plasmid, pKH9 (4,975 bp), was characterized and used to create new vectors for fusobacterial genetic manipulation. DNA sequence analysis of pKH9 revealed an open reading frame (ORF) encoding a putative autonomous rolling circle replication protein (Rep), an ORF predicted to encode a protein homologous to members of the FtsK/SpoIIIE cell division-DNA segregation protein family, and an operon encoding a putative toxin-antitoxin plasmid addiction system (txf-axf). Deletion analysis localized the pKH9 replication region in a 0.96-kbp fragment. The pKH9 rep gene is not present in this fragment, suggesting that pKH9 can replicate in fusobacteria independently of the Rep protein. A pKH9-based, compact Escherichia coli-F. nucleatum shuttle plasmid was constructed and found to be compatible with a previously described pFN1-based fusobacterial shuttle plasmid. Deletion of the pKH9 putative addiction system (txf-axf) reduced plasmid stability in fusobacteria, indicating its addiction properties and suggesting it to be the first plasmid addiction system described for fusobacteria. pKH9, its genetic elements, and its shuttle plasmid derivatives can serve as useful tools for investigating fusobacterial properties important in biofilm ecology and pathogenesis. 相似文献
107.
Y Ber R Shiloh Y Gilad N Degani S Bialik A Kimchi 《Cell death and differentiation》2015,22(3):465-475
Autophagy is a tightly regulated catabolic process, which is upregulated in cells in response to many different stress signals. Inhibition of mammalian target of rapmaycin complex 1 (mTORC1) is a crucial step in induction of autophagy, yet the mechanisms regulating the fine tuning of its activity are not fully understood. Here we show that death-associated protein kinase 2 (DAPK2), a Ca2+-regulated serine/threonine kinase, directly interacts with and phosphorylates mTORC1, and has a part in suppressing mTOR activity to promote autophagy induction. DAPK2 knockdown reduced autophagy triggered either by amino acid deprivation or by increases in intracellular Ca2+ levels. At the molecular level, DAPK2 depletion interfered with mTORC1 inhibition caused by these two stresses, as reflected by the phosphorylation status of mTORC1 substrates, ULK1 (unc-51-like kinase 1), p70 ribosomal S6 kinase and eukaryotic initiation factor 4E-binding protein 1. An increase in mTORC1 kinase activity was also apparent in unstressed cells that were depleted of DAPK2. Immunoprecipitated mTORC1 from DAPK2-depleted cells showed increased kinase activity in vitro, an indication that DAPK2 regulation of mTORC1 is inherent to the complex itself. Indeed, we found that DAPK2 associates with components of mTORC1, as demonstrated by co-immunoprecipitation with mTOR and its complex partners, raptor (regulatory-associated protein of mTOR) and ULK1. DAPK2 was also able to interact directly with raptor, as shown by recombinant protein-binding assay. Finally, DAPK2 was shown to phosphorylate raptor in vitro. This phosphorylation was mapped to Ser721, a site located within a highly phosphorylated region of raptor that has previously been shown to regulate mTORC1 activity. Thus, DAPK2 is a novel kinase of mTORC1 and is a potential new member of this multiprotein complex, modulating mTORC1 activity and autophagy levels under stress and steady-state conditions.Macroautophagy (hereafter referred to as autophagy) is a highly regulated intracellular bulk degradation process found ubiquitously in eukaryotes. During autophagy a double-membrane vesicle, termed an autophagosome, engulfs cytoplasmic materials, including whole organelles. The autophagosome is later fused with the lysosome and its content degraded by hydrolases.1 Basal levels of autophagy are maintained within the cell during steady state, and are involved in cell homeostasis activities such as turnover of long-lived proteins, preventing accumulation of protein aggregates, and removal of damaged cellular structures.2 Beyond this homeostatic function, autophagy is stimulated during various stress conditions, such as nutrient deprivation, intracellular Ca2+ increase, hypoxia, ER stress and oxidative stress, to ensure continuous cell survival under stress.3A critical step in the induction of autophagy comprises the inactivation of a key negative regulator of the process, the mammalian target of rapamycin (mTOR).4 mTOR is a conserved serine/threonine protein kinase that acts as a master regulator in the cell. mTOR forms a rapamycin-sensitive complex named mTORC1 with its binding partner raptor (regulatory-associated protein of mTOR), which mediates mTOR''s substrate presentation.5 mTORC1 senses nutrient availability, growth factors and energy levels, and, in response, regulates cell growth, metabolism and protein synthesis, mainly by phosphorylation of substrates involved in protein translation: the p70 ribosomal S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Under nutrient-rich conditions, mTORC1 suppresses autophagy to basal levels by phosphorylating and inhibiting the autophagy proteins ULK1 (unc-51-like kinase 1) and Atg13. Upon autophagic stimulus, mTORC1 activity is inhibited and the ULK1 complex is activated, leading to autophagy induction.6 The activity levels of mTORC1 are regulated by several mechanisms, such as interacting proteins, cellular localization and phosphorylation events. Raptor phosphorylation has been suggested as a mechanism by which upstream kinases such as AMPK,7 RSK8 and ULK19 can regulate mTORC1 activity.Death-associated protein kinase 2 (DAPK2; also named DRP-1) is a 42-kDa Ca2+/calmodulin (CaM)-regulated serine/threonine kinase,10 and a closely related homolog of DAPK, a gene originally discovered in an attempt to find positive regulators of cell death.11 DAPK2 was identified based on homology to the catalytic domain of DAPK. DAPK2 is a soluble cytoplasmatic protein, which triggers massive membrane blebbing and appearance of double-membrane autophagic vesicles upon its overexpression (for a review see Shiloh et al.12). DAPK2''s substrates and interacting proteins are mostly unknown, with the exception of the myosin II regulatory light chain, which has been shown to be an in vitro and in vivo substrate.13 Although many publications have studied DAPK, its substrates and its role in cell death and autophagy,14, 15 very little is known about DAPK2 substrates, cellular functions or the molecular pathways that it regulates.In this work, we studied the involvement of DAPK2 in the autophagic module. We identified DAPK2 as a novel interacting protein of mTORC1, and as a negative regulator of the complex both during steady-state growth conditions and in response to different stress autophagic signals. We identified mTOR''s binding partner, raptor, as a substrate of DAPK2, and found Ser721 as its phosphorylation site. 相似文献
108.
Shaul Druckmann Thomas K. Berger Sean Hill Felix Schürmann Henry Markram Idan Segev 《Biological cybernetics》2008,99(4-5):371-379
Neuron models, in particular conductance-based compartmental models, often have numerous parameters that cannot be directly determined experimentally and must be constrained by an optimization procedure. A common practice in evaluating the utility of such procedures is using a previously developed model to generate surrogate data (e.g., traces of spikes following step current pulses) and then challenging the algorithm to recover the original parameters (e.g., the value of maximal ion channel conductances) that were used to generate the data. In this fashion, the success or failure of the model fitting procedure to find the original parameters can be easily determined. Here we show that some model fitting procedures that provide an excellent fit in the case of such model-to-model comparisons provide ill-balanced results when applied to experimental data. The main reason is that surrogate and experimental data test different aspects of the algorithm’s function. When considering model-generated surrogate data, the algorithm is required to locate a perfect solution that is known to exist. In contrast, when considering experimental target data, there is no guarantee that a perfect solution is part of the search space. In this case, the optimization procedure must rank all imperfect approximations and ultimately select the best approximation. This aspect is not tested at all when considering surrogate data since at least one perfect solution is known to exist (the original parameters) making all approximations unnecessary. Furthermore, we demonstrate that distance functions based on extracting a set of features from the target data (such as time-to-first-spike, spike width, spike frequency, etc.)—rather than using the original data (e.g., the whole spike trace) as the target for fitting—are capable of finding imperfect solutions that are good approximations of the experimental data. 相似文献
109.
Bell JT Pai AA Pickrell JK Gaffney DJ Pique-Regi R Degner JF Gilad Y Pritchard JK 《Genome biology》2011,12(1):R10
Background
DNA methylation is an essential epigenetic mechanism involved in gene regulation and disease, but little is known about the mechanisms underlying inter-individual variation in methylation profiles. Here we measured methylation levels at 22,290 CpG dinucleotides in lymphoblastoid cell lines from 77 HapMap Yoruba individuals, for which genome-wide gene expression and genotype data were also available. 相似文献110.
Brigham B. Hyde Gilad Twig Orian S. Shirihai 《Seminars in cell & developmental biology》2010,21(6):575-581
Mitochondrial dynamics, the fusion and fission of individual mitochondrial units, is critical to the exchange of the metabolic, genetic and proteomic contents of individual mitochondria. In this regard, fusion and fission events have been shown to modulate mitochondrial bioenergetics, as well as several cellular processes including fuel sensing, ATP production, autophagy, apoptosis, and the cell cycle. Regulation of the dynamic events of fusion and fission occur at two redundant and interactive levels. Locally, the microenvironment of the individual mitochondrion can alter its ability to fuse, divide or move through the cell. Globally, nuclear-encoded processes and cellular ionic and second messenger systems can alter or activate mitochondrial proteins, regulate mitochondrial dynamics and concomitantly change the condition of the mitochondrial population. In this review we investigate the different global and local signals that control mitochondrial biology. This discussion is carried out to clarify the different signals that impact the status of the mitochondrial population. 相似文献