首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14738篇
  免费   1106篇
  国内免费   361篇
  16205篇
  2024年   26篇
  2023年   116篇
  2022年   318篇
  2021年   449篇
  2020年   329篇
  2019年   391篇
  2018年   448篇
  2017年   366篇
  2016年   499篇
  2015年   799篇
  2014年   930篇
  2013年   1005篇
  2012年   1264篇
  2011年   1207篇
  2010年   784篇
  2009年   660篇
  2008年   890篇
  2007年   804篇
  2006年   666篇
  2005年   618篇
  2004年   624篇
  2003年   496篇
  2002年   406篇
  2001年   305篇
  2000年   255篇
  1999年   257篇
  1998年   119篇
  1997年   89篇
  1996年   71篇
  1995年   72篇
  1994年   74篇
  1993年   53篇
  1992年   104篇
  1991年   96篇
  1990年   75篇
  1989年   67篇
  1988年   57篇
  1987年   39篇
  1986年   37篇
  1985年   43篇
  1984年   21篇
  1983年   29篇
  1982年   21篇
  1981年   17篇
  1980年   30篇
  1979年   21篇
  1978年   16篇
  1977年   19篇
  1974年   18篇
  1970年   14篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
11.
The spindle checkpoint is a cell cycle surveillance system that ensures the fidelity of chromosome segregation. In mitosis, it elicits the “wait anaphase” signal to inhibit the anaphase-promoting complex or cyclosome until all chromosomes achieve bipolar microtubule attachment and align at the metaphase plate. Because a single kinetochore unattached to microtubules activates the checkpoint, the wait anaphase signal is thought to be generated by this kinetochore and is then amplified and distributed throughout the cell to inhibit the anaphase-promoting complex/cyclosome. Several spindle checkpoint kinases participate in the generation and amplification of this signal. Recent studies have begun to reveal the activation mechanisms of these checkpoint kinases. Increasing evidence also indicates that the checkpoint kinases not only help to generate the wait anaphase signal but also actively correct kinetochore-microtubule attachment defects.  相似文献   
12.
Bacillus thuringiensis NTB-1 isolated from soil samples in Korea produces ovoidal parasporal inclusions with proteins of approximately 24–40 kDa in size. Although serological study indicated that the isolate has a flagella (H) antigen identical with subsp. israelensis , it seemed to be non-insecticidal against Lepidoptera and Coleoptera as well as Diptera. To investigate the activity of non-insecticidal B. thuringiensis transformed with insecticidal crystal protein genes, cryIVD and cytA genes of B. thuringiensis subsp. morrisoni PG-14, highly toxic to mosquito larvae, were introduced into the isolate NTB-1. The expression of mosquitocidal crystal protein genes in NTB-1 was characterized by SDS–PAGE analysis and electron microscopy. The results showed that crystalline inclusions of host, CryIVD and CytA were stably expressed in the transformant. However, the mosquitocidal activity of transformant was similar to that of B. thuringiensis subsp. kurstaki Cry B harbouring cryIVD and cytA genes, demonstrating that a synergistic effect by an interaction of both introduced insecticidal and resident non-insecticidal crystal proteins was not observed.  相似文献   
13.
Photosynthesis-irradiance (PI) curves are extensively used in field and laboratory research to evaluate the photon-use efficiency of plants. However, most existing models for PI curves focus on the relationship between the photosynthetic rate (Pn) and photosynthetically active radiation (PAR), and do not take account of the influence of environmental factors on the curve. In the present study, we used a new non-competitive inhibited Michaelis-Menten model (NIMM) to predict the co-variation of Pn, PAR, and the relative pollution index (I). We then evaluated the model with published data and our own experimental data. The results indicate that the Pn of plants decreased with increasing I in the environment and, as predicted, were all fitted well by the NIMM model. Therefore, our model provides a robust basis to evaluate and understand the influence of environmental pollution on plant photosynthesis.  相似文献   
14.
Casein kinase 1 (CK1) is a pleiotropic protein kinase implicated in several fundamental processes of eukaryotic cell biology. Plasmodium falciparum encodes a single CK1 isoform, PfCK1, that is expressed at all stages of the parasite’s life cycle. We have previously shown that the pfck1 gene cannot be disrupted, but that the locus can be modified if no loss-of-function is incurred, suggesting an important role for this kinase in intra-erythrocytic asexual proliferation. Here, we report on the use of parasite lines expressing GFP- or His-tagged PfCK1 from the endogenous locus to investigate (i) the dynamics of PfCK1 localisation during the asexual cycle in red blood cells, and (ii) potential interactors of PfCK1, so as to gain insight into the involvement of the enzyme in specific cellular processes. Immunofluorescence analysis reveals a dynamic localisation of PfCK1, with evidence for a pool of the enzyme being directed to the membrane of the host erythrocyte in the early stages of infection, followed by a predominantly intra-parasite localisation in trophozoites and schizonts and association with micronemes in merozoites. Furthermore, we present strong evidence that a pool of enzymatically active PfCK1 is secreted into the culture supernatant, demonstrating that PfCK1 is an ectokinase. Our interactome experiments and ensuing kinase assays using recombinant PfCK1 to phosphorylate putative interactors in vitro suggest an involvement of PfCK1 in many cellular processes such as mRNA splicing, protein trafficking, ribosomal, and host cell invasion.  相似文献   
15.
16.
In this study, we clarified the population structure of the gizzard shad, Konosirus punctatus, in Korean waters. We analyzed 896 base pairs of the mitochondrial DNA control region in 182 individuals, which were sampled from eight localities between the East Sea and the Yellow Sea. The haplotype diversity (h) was very high (0.9662–1.0000) but the nucleotide diversity (π) was very low (0.0061–0.0434). A neighbor-joining tree showed that the population clustered into two reciprocal monophyletic groups, lineages A and B. Lineage A is distributed on all coasts of Korea, from the Yellow Sea to the East Sea, declining to the east, whereas lineage B is distributed in the East Sea and Korea Strait, disappearing completely from middle Korea Strait to the west. Analysis of molecular variance showed strong structuring (F ST = 0.856; P < 0.0001) between the two lineages. Neutrality tests and mismatch distribution analyses showed that a recent rapid expansion event occurred only in lineage A. Our results suggest that the management unit of the Korean gizzard shad may be divided in two, lineage A and lineage B.  相似文献   
17.
18.
In the present study, we addressed the question of whether treatment with mannitol, an osmotic diuretic, affects astrogliovascular responses to status epilepticus (SE). In saline-treated animals, astrocytes exhibited reactive astrogliosis in the CA1-3 regions 2-4 days after SE. In the mannitol-treated animals, a large astroglial empty zone was observed in the CA1 region 2 days after SE. This astroglial loss was unrelated to vasogenic edema formation. There was no difference in SE-induced neuronal loss between saline- and mannitol-treated animals. Furthermore, mannitol treatment did not affect astroglial loss and vasogenic edema formation in the dentate gyrus and the piriform cortex. These findings suggest that mannitol treatment induces selective astroglial loss in the CA1 region independent of vasogenic edema formation following SE. These findings support the hypothesis that the susceptibility of astrocytes to SE is most likely due to the distinctive heterogeneity of astrocytes independent of hemodynamics. [BMB Reports 2015; 48(9): 507-512]  相似文献   
19.
Following the programme started at Janssen Research Foundation searching for 5-HT(2A/2C) antagonists, we now report on the synthesis of a series of substituted 2-(Dimethylaminomethyl)-2,3,3a,8-tetrahydrodibenzo[c,f]isoxazolo[2,3-a]azepine derivatives. The 5-HT(2A), 5-HT(2C) and H(1) receptor affinities as well as the mCPP antagonistic activity of the compounds synthesised is described.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号