首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2604篇
  免费   216篇
  2023年   13篇
  2022年   26篇
  2021年   63篇
  2020年   37篇
  2019年   39篇
  2018年   49篇
  2017年   46篇
  2016年   72篇
  2015年   101篇
  2014年   125篇
  2013年   140篇
  2012年   171篇
  2011年   167篇
  2010年   128篇
  2009年   115篇
  2008年   155篇
  2007年   150篇
  2006年   131篇
  2005年   131篇
  2004年   115篇
  2003年   104篇
  2002年   94篇
  2001年   54篇
  2000年   49篇
  1999年   54篇
  1998年   27篇
  1997年   28篇
  1996年   18篇
  1995年   12篇
  1994年   17篇
  1993年   17篇
  1992年   35篇
  1991年   32篇
  1990年   26篇
  1989年   25篇
  1988年   22篇
  1987年   23篇
  1986年   21篇
  1985年   23篇
  1984年   14篇
  1983年   18篇
  1982年   10篇
  1981年   12篇
  1980年   13篇
  1975年   7篇
  1974年   10篇
  1973年   9篇
  1972年   7篇
  1970年   7篇
  1968年   7篇
排序方式: 共有2820条查询结果,搜索用时 31 毫秒
71.
Phagocytosis of zymosan particles coated with complement induces a time and dose dependent inhibition of the enzyme phospholipid methyltransferase in human polymorphonuclear cells. The extent of phospholipid methyltransferase inhibition induced by various concentrations of zymosan strongly correlates with the secretory process: liberation of platelet-activating factor (PAF) and β-glucuronidase. Zymosan also decreases the incorporation of 3H-methyl group into phospholipids in cells pre-labeled with (3H-methyl)-methionine. Finally, preincubation of cells with 3-deaza-adenosine and homocysteine thiolactone, inhibitors of phospholipid methyltransferase, decrease the incorporation of 3H-methyl group into phospholipids in cells pre-labeled with (3H-methyl)-methionine and modulate the release of PAF. These results suggest that phospholipid methylation plays an important role during the transduction of the secretory signal triggered by zymosan in human polymorphonuclear cells.  相似文献   
72.
The biosynthesis by Streptomyces griseus of candicidin, an aromatic polyene macrolide antibiotic, was inhibited by L-tryptophan, L-phenylalanine and, to a lesser degree, by L-tyrosine. A mixture of the three aromatic amino acids inhibited candicidin biosynthesis to a greater extent than did each amino acid separately. L-Tryptophan strongly inhibited the incorporation of the labelled precursors propionate or 4-aminobenzoic acid into candicidin. Incorporation of propionate into candicidin was 50% inhibited by 2.5 mM-tryptophan. Inhibition by tryptophan did not require protein synthesis as the same effect was observed in cells in which protein synthesis was prevented by chloramphenicol. The inhibitory effect of L-tryptophan was partially reversed by exogenous 4-aminobenzoic acid suggesting that this effect is exerted at the level of 4-aminobenzoic acid synthase.  相似文献   
73.
1. 1. Cu2+ at a concentration of 10−4 M, when applied to the external side of the frog skin produces an increase in the short-circuit current (Isc).
2. 2. This effect was studied in skins of Rana temporaria adapted to cold (5°C) and room temperature (20°C), skins of Rana pipiens adapted to cold, and the results compared with those obtained previously with Rana ribibunda.
3. 3. The observed effect is less dependent upon the adaptation to cold than upon the functional state of the skin: skins with low short circuit currents have a bigger response to Cu2+ than skins with high Isc.
4. 4. A species difference cannot be ruled out since skins of Rana ribibunda exhibiting high Isc give good responses to Cu2+.
5. 5. 5,5′-dithiobis(2-nitrobenzoic acid), a sulphydryl-oxidizing reagent, produces an effect similar to that of Cu2+, and dithiothreitol an SH-reducing agent, reverses the effect of this ion.
6. 6. Cu2+ also induces an increase in the unidirectional K+ fluxes and unmasks a net outward potassium flux.
7. 7. The outward K+ flux induced by Cu2+ is sensitive to ouabain.
8. 8. It is concluded that Cu2+ increases the permeability of the external barrier of the frog skin to Na+ and K+, probably by reacting with SH groups.
Abbreviations: DTNB; 5; 5′-dithiobis(2-nitrobenzoic acid)  相似文献   
74.
75.
Species distribution models (SDMs) correlate species occurrences with environmental predictors, and can be used to forecast distributions under future climates. SDMs have been criticized for not explicitly including the physiological processes underlying the species response to the environment. Recently, new methods have been suggested to combine SDMs with physiological estimates of performance (physiology-SDMs). In this study, we compare SDM and physiology-SDM predictions for select marine species in the Mediterranean Sea, a region subjected to exceptionally rapid climate change. We focused on six species and created physiology-SDMs that incorporate physiological thermal performance curves from experimental data with species occurrence records. We then contrasted projections of SDMs and physiology-SDMs under future climate (year 2100) for the entire Mediterranean Sea, and particularly the ‘warm’ trailing edge in the Levant region. Across the Mediterranean, we found cross-validation model performance to be similar for regular SDMs and physiology-SDMs. However, we also show that for around half the species the physiology-SDMs substantially outperform regular SDM in the warm Levant. Moreover, for all species the uncertainty associated with the coefficients estimated from the physiology-SDMs were much lower than in the regular SDMs. Under future climate, we find that both SDMs and physiology-SDMs showed similar patterns, with species predicted to shift their distribution north-west in accordance with warming sea temperatures. However, for the physiology-SDMs predicted distributional changes are more moderate than those predicted by regular SDMs. We conclude, that while physiology-SDM predictions generally agree with the regular SDMs, incorporation of the physiological data led to less extreme range shift forecasts. The results suggest that climate-induced range shifts may be less drastic than previously predicted, and thus most species are unlikely to completely disappear with warming climate. Taken together, the findings emphasize that physiological experimental data can provide valuable supplemental information to predict range shifts of marine species.  相似文献   
76.
CmPI-II is a Kazal-type tight-binding inhibitor isolated from the Caribbean snail Cenchritis muricatus. This inhibitor has an unusual specificity in the Kazal family, as it can inhibit subtilisin A (SUBTA), elastases and trypsin. An alanine in CmPI-II P1 site could avoid trypsin inhibition while improving/maintaining SUBTA and elastases inhibition. Thus, an alanine mutant of this position (rCmPI-II R12A) was obtained by site-directed mutagenesis. The gene cmpiR12A was expressed in P. pastoris KM71H yeast. The recombinant protein (rCmPI-II R12A) was purified by the combination of two ionic exchange chromatography (1:cationic, 2 anionic) followed by and size exclusion chromatography. The N-terminal sequence obtained as well as the experimental molecular weight allowed verifying the identity of the recombinant protein, while the correct folding was confirmed by CD experiments. rCmPI-II R12A shows a slightly increase in potency against SUBTA and elastases. The alanine substitution at P1 site on CmPI-II abolishes the trypsin inhibition, confirming the relevance of an arginine residue at P1 site in CmPI-II for trypsin inhibition and leading to a molecule with more potentialities in biomedicine.  相似文献   
77.
Varronia curassavica is cultivated for the production of an essential oil useful in the pharmaceutical industry for its strong anti-inflammatory effect. Despite a growing demand, only a few studies have evaluated alternative sources of obtaining plantlets or ways to increase the yield of essential oil from this species. Therefore, this study aimed to optimize the in vitro multiplication rate and analyze the histochemistry and sesquiterpene production potential of conventionally propagated V. curassavica plants, in vitro shoots, and acclimatized plants derived from in vitro shoots. For axillary bud proliferation, Murashige and Skoog medium was supplemented with 6-benzyladenine and thidiazuron alone or in combination with naphthalene acetic acid. Axillary bud proliferation was obtained from culture of nodal or apical segments on medium containing half-strength Murashige and Skoog salts without growth regulators. After 35 d of culture, an average of five buds developed per explant. Elongation and rooting of shoots also occurred in this medium. After the transfer of rooted plants to ex vitro conditions, 100% of the plantlets survived. Histochemical analysis of leaf tissue showed the presence of lipids, acidic lipids, essential oil, phenols, and flavonoids. The essential oils from conventionally propagated and acclimatized plants were extracted by hydrodistillation and analyzed using gas chromatography. The essential oil from acclimatized plants had a similar profile to that from ex vitro plants, but with a higher concentration of the anti-inflammatory compound alpha-humulene.  相似文献   
78.
Aldose reductase (AR) is abundantly expressed in a variety of cell lineages and has been implicated in the cellular response against oxidative stress. However, the exact functional role of AR against oxidative stress remains relatively unclear. This study investigated the role of AR in acrolein- or hydrogen peroxide-induced apoptosis using the J774.A.1 macrophage cell line. Ablation of AR with a small interference RNA or inhibition of AR activity significantly enhanced the acrolein- or hydrogen peroxide-induced generation of reactive oxygen species and aldehydes, leading to increased apoptotic cell death. Blockade of AR activity in J774A.1 cells markedly augmented the acrolein- or hydrogen peroxide-induced translocation of Bax to mitochondria along with reduced Bcl-2 and increased release of cytochrome c from the mitochodria. Taken together, these findings indicate that AR plays an important role in the cellular response against oxidative stress, by sequestering the reactive molecules generated in cells exposed to toxic substances.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号