首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749篇
  免费   51篇
  800篇
  2023年   4篇
  2022年   4篇
  2021年   16篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   9篇
  2016年   16篇
  2015年   24篇
  2014年   31篇
  2013年   34篇
  2012年   44篇
  2011年   53篇
  2010年   38篇
  2009年   35篇
  2008年   48篇
  2007年   35篇
  2006年   42篇
  2005年   49篇
  2004年   49篇
  2003年   34篇
  2002年   41篇
  2001年   13篇
  2000年   3篇
  1999年   6篇
  1998年   9篇
  1997年   5篇
  1996年   13篇
  1995年   6篇
  1994年   5篇
  1993年   10篇
  1992年   6篇
  1990年   8篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   6篇
  1984年   6篇
  1983年   8篇
  1982年   4篇
  1981年   7篇
  1980年   10篇
  1979年   5篇
  1978年   7篇
  1977年   2篇
  1976年   6篇
  1975年   3篇
  1973年   2篇
  1957年   1篇
排序方式: 共有800条查询结果,搜索用时 12 毫秒
101.
Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied by the formation of thin cellular extensions that allowed the bacterium to adhere to cellulose, followed by formation of a ramifying network that interconnected individual cells to one another and to the unraveling cellulose microfibrils. Extraction of 48-h-old whole-culture pellets (bacterial cells plus glycocalyx [G] plus residual cellulose [C]) with 0.1 N NaOH released carbohydrate and protein in a ratio of 1:5. Boiling of the cellulose fermentation residue in a neutral detergent solution removed almost all of the adherent cells and protein while retaining a residual network of adhering noncellular material. Trifluoroacetic acid hydrolysis of this residue (G plus C) released primarily glucose, along with substantial amounts of xylose and mannose, but only traces of galactose, the most abundant sugar in most characterized bacterial exopolysaccharides. Linkage analysis and characterization by nuclear magnetic resonance suggested that most of the glucosyl units were not present as partially degraded cellulose. Calculations suggested that the energy demand for synthesis of the nonprotein fraction of EPS by this organism represents only a small fraction (<4%) of the anabolic ATP expenditure of the bacterium.  相似文献   
102.
103.
The O-GlcNAc modification involves the attachment of single β-O-linked N-acetylglucosamine residues to serine and threonine residues of nucleocytoplasmic proteins. Interestingly, previous biochemical and structural studies have shown that O-GlcNAcase (OGA), the enzyme that removes O-GlcNAc from proteins, has an active site pocket that tolerates various N-acyl groups in addition to the N-acetyl group of GlcNAc. The remarkable sequence and structural conservation of residues comprising this pocket suggest functional importance. We hypothesized this pocket enables processing of metabolic variants of O-GlcNAc that could be formed due to inaccuracy within the metabolic machinery of the hexosamine biosynthetic pathway. In the accompanying paper (Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, 28865-28881), N-glycolylglucosamine (GlcNGc) was shown to be a catabolite of NeuNGc. Here, we show that the hexosamine salvage pathway can convert GlcNGc to UDP-GlcNGc, which is then used to modify proteins with O-GlcNGc. The kinetics of incorporation and removal of O-GlcNGc in cells occur in a dynamic manner on a time frame similar to that of O-GlcNAc. Enzymatic activity of O-GlcNAcase (OGA) toward a GlcNGc glycoside reveals OGA can process glycolyl-containing substrates fairly efficiently. A bacterial homolog (BtGH84) of OGA, from a human gut symbiont, also processes O-GlcNGc substrates, and the structure of this enzyme bound to a GlcNGc-derived species reveals the molecular basis for tolerance and binding of GlcNGc. Together, these results demonstrate that analogs of GlcNAc, such as GlcNGc, are metabolically viable species and that the conserved active site pocket of OGA likely evolved to enable processing of mis-incorporated analogs of O-GlcNAc and thereby prevent their accumulation. Such plasticity in carbohydrate processing enzymes may be a general feature arising from inaccuracy in hexosamine metabolic pathways.  相似文献   
104.
The kinetics of T and B cell immune recovery after bone marrow transplantation (BMT) is affected by many pre- and post-transplant factors. Because of the profoundly depleted baseline T and B cell immunity in recombination activating gene 2 (RAG-2)-deficient severe combined immunodeficiency (SCID) patients, some of these factors are eliminated, and the immune recovery after BMT can then be clearly assessed. This process was followed in ten SCID patients in parallel to their associated transplant-related complications. Early peripheral presence of T and B cells was observed in 8 and 4 patients, respectively. The latter correlated with pre-transplant conditioning therapy. Cells from these patients carried mainly signal joint DNA episomes, indicative of newly derived B and T cells. They were present before the normalization of the T cell receptor (TCR) and the B cell receptor (BCR) repertoire. Early presentation of the ordered TCR gene rearrangements after BMT occurred simultaneously, but this pattern was heterogeneous over time, suggesting different and individual thymic recovery processes. Our findings early after transplant could suggest the long-term patients' clinical outcome. Early peripheral presence of newly produced B and T lymphocytes from their production and maturation sites after BMT suggests donor stem cell origin rather than peripheral expansion, and is indicative of successful outcome. Peripheral detection of TCR excision circles and kappa-deleting recombination excision circles in RAG-2-deficient SCID post-BMT are early markers of T and B cell reconstitution, and can be used to monitor outcome and tailor specific therapy for patients undergoing BMT.  相似文献   
105.
106.
Genome analyses highlight the different biological roles of cellulases   总被引:1,自引:0,他引:1  
Cellulolytic enzymes have been the subject of renewed interest owing to their potential role in the conversion of plant lignocellulose to sustainable biofuels. An analysis of ~1,500 complete bacterial genomes, presented here, reveals that ~40% of the genomes of sequenced bacteria encode at least one cellulase gene. Most of the bacteria that encode cellulases are soil and marine saprophytes, many of which encode a range of enzymes for cellulose hydrolysis and also for the breakdown of the other constituents of plant cell walls (hemicelluloses and pectins). Intriguingly, cellulases are present in organisms that are usually considered as non-saprophytic, such as Mycobacterium tuberculosis, Legionella pneumophila, Yersinia pestis and even Escherichia coli. We also discuss newly emerging roles of cellulases in such non-saprophytic organisms.  相似文献   
107.
108.
The reuse of grey water for non-potable water applications is a potential solution for water-deprived regions worldwide. Adequate treatment of grey water prior to reuse is important to reduce the risks of pathogen transmission and to improve the efficacy of subsequent disinfection. This study investigated the presence of common pathogens in grey water and compared the pathogen removal performance of leading contender treatment technologies. The opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus were detected in the grey water tested. Three configurations of constructed wetland, a membrane bioreactor (MBR), and a membrane chemical reactor (MCR) were evaluated for indicator bacteria (total coliforms, Escherichia coli, Enterococci, Clostridia, and heterotrophs) removal over a period of 2 years under conditions of low and high strength grey water influent. Total coliforms were found to be good indicators for P. aeruginosa, showing strong and significant Spearman's rank correlations in the influent grey water (rs = 0.77, P = 0.005) and treated effluents (rs = 0.81, P  0.001). The MBR provided the highest quality treated effluent and was the most robust treatment technology, remaining unaffected by an increase in influent grey water strength. Of the three constructed wetlands, the VFRB was the most reliable performer under low and high strength influent conditions, indicating aerobic unsaturated wetland to be the most suitable form of the technology for pathogen removal.  相似文献   
109.
Anesthetic agents prolong cardiac repolarization by blocking ion currents. However, the clinical relevance of this blockade in subjects with reduced repolarization reserve is unknown. We have generated transgenic long QT syndromes type 1 (LQT1) and type 2 (LQT2) rabbits that lack slow delayed rectifier K+ currents (IKs) or rapidly activating K+ currents (IKr) and used them as a model system to detect the channel-blocking properties of anesthetic agents. Therefore, LQT1, LQT2, and littermate control (LMC) rabbits were administered isoflurane, thiopental, midazolam, propofol, or ketamine, and surface ECGs were analyzed. Genotype-specific heart rate correction formulas were used to determine the expected QT interval at a given heart rate. The QT index (QTi) was calculated as percentage of the observed QT/expected QT. Isoflurane, a drug that blocks IKs) prolonged the QTi only in LQT2 and LMC but not in LQT1 rabbits. Midazolam, which blocks inward rectifier K+ current (IK1), prolonged the QTi in both LQT1 and LQT2 but not in LMC. Thiopental, which blocks both IKs and IK1, increased the QTi in LQT2 and LMC more than in LQT1. By contrast, ketamine, which does not block IKr, IKs, or IK1, did not alter the QTi in any group. Finally, anesthesia with isoflurane or propofol resulted in lethal polymorphic ventricular tachycardia (pVT) in three out of nine LQT2 rabbits. Transgenic LQT1 and LQT2 rabbits could serve as an in vivo model in which to examine the pharmacogenomics of drug-induced QT prolongation of anesthetic agents and their proarrhythmic potential. Transgenic LQT2 rabbits developed pVT under isoflurane and propofol, underlining the proarrhythmic risk of IKs blockers in subjects with reduced IKr.  相似文献   
110.
The survival of motor neurons (SMN) protein, the product of the gene responsible for the motor neuron degenerative disease spinal muscular atrophy (SMA), is part of a large macromolecular complex. The SMN complex is localized in both the cytoplasm and the nucleus and contains SMN, Gemin2, Gemin3, Gemin4, Gemin5, and a few not yet identified proteins. The SMN complex plays a key role in the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and other ribonucleoprotein particles. As a step toward the complete characterization of the components of the SMN complex, we generated stable cell lines that express FLAG-tagged SMN or Gemin2 under the control of a tetracycline-inducible promoter. Native SMN complexes of identical protein composition to those isolated by immunoprecipitation with anti-SMN antibodies were purified by affinity chromatography from extracts of both cell lines. Here we report the identification by mass spectrometry of a novel protein component of the SMN complex termed Gemin6. Co-immunoprecipitation, immunolocalization, and in vitro binding experiments demonstrate that Gemin6 is a component of the SMN complex that localizes to gems and interacts with several Sm proteins of the spliceosomal snRNPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号