首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3451篇
  免费   398篇
  国内免费   2篇
  2022年   28篇
  2021年   42篇
  2018年   30篇
  2017年   26篇
  2016年   52篇
  2015年   123篇
  2014年   101篇
  2013年   141篇
  2012年   169篇
  2011年   154篇
  2010年   119篇
  2009年   89篇
  2008年   136篇
  2007年   128篇
  2006年   129篇
  2005年   133篇
  2004年   118篇
  2003年   116篇
  2002年   112篇
  2001年   91篇
  2000年   103篇
  1999年   78篇
  1998年   44篇
  1997年   43篇
  1996年   46篇
  1995年   33篇
  1994年   27篇
  1993年   34篇
  1992年   79篇
  1991年   62篇
  1990年   88篇
  1989年   53篇
  1988年   70篇
  1987年   49篇
  1986年   65篇
  1985年   64篇
  1984年   48篇
  1983年   54篇
  1982年   47篇
  1981年   45篇
  1980年   47篇
  1979年   44篇
  1978年   50篇
  1977年   50篇
  1976年   46篇
  1975年   42篇
  1974年   45篇
  1973年   39篇
  1972年   41篇
  1970年   43篇
排序方式: 共有3851条查询结果,搜索用时 31 毫秒
971.

Background

Several genomes have now been sequenced, with millions of genetic variants annotated. While significant progress has been made in mapping single nucleotide polymorphisms (SNPs) and small (<10 bp) insertion/deletions (indels), the annotation of larger structural variants has been less comprehensive. It is still unclear to what extent a typical genome differs from the reference assembly, and the analysis of the genomes sequenced to date have shown varying results for copy number variation (CNV) and inversions.

Results

We have combined computational re-analysis of existing whole genome sequence data with novel microarray-based analysis, and detect 12,178 structural variants covering 40.6 Mb that were not reported in the initial sequencing of the first published personal genome. We estimate a total non-SNP variation content of 48.8 Mb in a single genome. Our results indicate that this genome differs from the consensus reference sequence by approximately 1.2% when considering indels/CNVs, 0.1% by SNPs and approximately 0.3% by inversions. The structural variants impact 4,867 genes, and >24% of structural variants would not be imputed by SNP-association.

Conclusions

Our results indicate that a large number of structural variants have been unreported in the individual genomes published to date. This significant extent and complexity of structural variants, as well as the growing recognition of their medical relevance, necessitate they be actively studied in health-related analyses of personal genomes. The new catalogue of structural variants generated for this genome provides a crucial resource for future comparison studies.  相似文献   
972.

Background  

Accurate evaluation and modelling of residue-residue interactions within and between proteins is a key aspect of computational structure prediction including homology modelling, protein-protein docking, refinement of low-resolution structures, and computational protein design.  相似文献   
973.

Background

The genomewide evaluation of genetic epistasis is a computationally demanding task, and a current challenge in Genetics. HFCC (Hypothesis-Free Clinical Cloning) is one of the methods that have been suggested for genomewide epistasis analysis. In order to perform an exhaustive search of epistasis, HFCC has implemented several tools and data filters, such as the use of multiple replication groups, and direction of effect and control filters. A recent article has claimed that the use of multiple replication groups (as implemented in HFCC) does not reduce the false positive rate, and we hereby try to clarify these issues.

Results/Discussion

HFCC uses, as an analysis strategy, the possibility of replicating findings in multiple replication groups, in order to select a liberal subset of preliminary results that are above a statistical criterion and consistent in direction of effect. We show that the use of replication groups and the direction filter reduces the false positive rate of a study, although at the expense of lowering the overall power of the study. A post-hoc analysis of these selected signals in the combined sample could then be performed to select the most promising results.

Conclusion

Replication of results in independent samples is generally used in scientific studies to establish credibility in a finding. Nonetheless, the combined analysis of several datasets is known to be a preferable and more powerful strategy for the selection of top signals. HFCC is a flexible and complete analysis tool, and one of its analysis options combines these two strategies: A preliminary multiple replication group analysis to eliminate inconsistent false positive results, and a post-hoc combined-group analysis to select the top signals.  相似文献   
974.
975.
976.
The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed.  相似文献   
977.
Targeted intervention of the B-Raf V600E gene product that is prominent in melanoma has been met with modest success. Here, we characterize the pharmacological properties of PLX4032, a next-generation inhibitor with exquisite specificity against the V600E oncogene and striking anti-melanoma activity. PLX4032 induces potent cell cycle arrest, inhibits proliferation, and initiates apoptosis exclusively in V600E-positive cells in a variety of in vitro experimental systems; follow-up xenograft studies demonstrate extreme selectivity and efficacy against melanoma tumors bearing the V600E oncoproduct. The collective data support further exploration of PLX4032 as a candidate drug for patients with metastatic melanoma; accordingly, validation of PLX4032 as a therapeutic tool for patients with melanoma is now underway in advanced human (Phase III) clinical trials.  相似文献   
978.

Background

The enzymatic hydrolysis of α−mannosides is catalyzed by glycoside hydrolases (GH), termed α−mannosidases. These enzymes are found in different GH sequence–based families. Considerable research has probed the role of higher eukaryotic “GH38” α−mannosides that play a key role in the modification and diversification of hybrid N-glycans; processes with strong cellular links to cancer and autoimmune disease. The most extensively studied of these enzymes is the Drosophila GH38 α−mannosidase II, which has been shown to be a retaining α−mannosidase that targets both α−1,3 and α−1,6 mannosyl linkages, an activity that enables the enzyme to process GlcNAc(Man)5(GlcNAc)2 hybrid N-glycans to GlcNAc(Man)3(GlcNAc)2. Far less well understood is the observation that many bacterial species, predominantly but not exclusively pathogens and symbionts, also possess putative GH38 α−mannosidases whose activity and specificity is unknown.

Methodology/Principal Findings

Here we show that the Streptococcus pyogenes (M1 GAS SF370) GH38 enzyme (Spy1604; hereafter SpGH38) is an α−mannosidase with specificity for α−1,3 mannosidic linkages. The 3D X-ray structure of SpGH38, obtained in native form at 1.9 Å resolution and in complex with the inhibitor swainsonine (K i 18 µM) at 2.6 Å, reveals a canonical GH38 five-domain structure in which the catalytic “–1” subsite shows high similarity with the Drosophila enzyme, including the catalytic Zn2+ ion. In contrast, the “leaving group” subsites of SpGH38 display considerable differences to the higher eukaryotic GH38s; features that contribute to their apparent specificity.

Conclusions/Significance

Although the in vivo function of this streptococcal GH38 α−mannosidase remains unknown, it is shown to be an α−mannosidase active on N-glycans. SpGH38 lies on an operon that also contains the GH84 hexosaminidase (Spy1600) and an additional putative glycosidase. The activity of SpGH38, together with its genomic context, strongly hints at a function in the degradation of host N- or possibly O-glycans. The absence of any classical signal peptide further suggests that SpGH38 may be intracellular, perhaps functioning in the subsequent degradation of extracellular host glycans following their initial digestion by secreted glycosidases.  相似文献   
979.
Persistent immune activation plays a central role in driving Human Immunodeficiency Virus (HIV) disease progression. Whether CD4+CD25+ regulatory T cells (Tregs) are harmful by suppressing HIV-specific immune responses and/or beneficial through a decrease in immune activation remains debatable. We analysed the relationship between proportion and number of regulatory T cells (Tregs) and immune activation in HIV-infected patients interrupting an effective antiretroviral therapy (ART). Twenty-five patients were included in a substudy of a prospective multicenter trial of treatment interruption (TI) (ANRS 116). Proportions and numbers of Tregs and the proportion of activated CD4 and CD8 T cells were assessed at baseline and month 12 (M12) of TI. Specific anti-HIV CD4 and CD8 responses were investigated at baseline and M12. Non parametric univariate analyses and multivariate linear regression models were conducted. At baseline, the proportion of Tregs negatively correlated with the proportion of HLA-DR+CD8+T cells (r = −0.519). Following TI, the proportion of Tregs increased from 6.3% to 7.2% (p = 0.029); absolute numbers of Tregs decreased. The increase in the proportion of HLA-DR+CD38+CD8+T cells was significantly related to the increase in proportion of Tregs (p = 0.031). At M12, the proportion of Tregs did not negatively correlate with CD8 T-cell activation. Nevertheless, Tregs retain a suppressive function since depletion of Treg-containing CD4+CD25+ cells led to an increase in lymphoproliferative responses in most patients studied. Our data suggest that Tregs are efficient in controlling residual immune activation in patients with ART-mediated viral suppression. However, the insufficient increase in the proportion and/or the decrease in the absolute number of Tregs result in a failure to control immune activation following TI.

Trial Registration

ClinicalTrials.gov NCT00118677  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号