首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   51篇
  2019年   2篇
  2018年   2篇
  2017年   6篇
  2016年   9篇
  2015年   14篇
  2014年   19篇
  2013年   10篇
  2012年   12篇
  2011年   9篇
  2010年   7篇
  2009年   11篇
  2008年   7篇
  2007年   8篇
  2006年   9篇
  2005年   12篇
  2004年   8篇
  2003年   3篇
  2002年   8篇
  2001年   12篇
  2000年   14篇
  1999年   8篇
  1998年   8篇
  1997年   10篇
  1996年   8篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   5篇
  1975年   4篇
  1974年   4篇
  1973年   4篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1963年   2篇
  1957年   1篇
  1934年   1篇
排序方式: 共有294条查询结果,搜索用时 531 毫秒
91.
Trypanosoma cruzi is an intracellular parasite and the causative agent of Chagas disease. Previous work has shown that the chemokine receptor CCR5 plays a role in systemic T. cruzi protection. We evaluated the importance of CCR5 and CCL5 for mucosal protection against natural oral and conjunctival T. cruzi challenges. T. cruzi-immune CCR5(-/-) and wild-type C57BL/6 mice were generated by repeated infectious challenges with T. cruzi. CCR5(-/-) and wild-type mice developed equivalent levels of cellular, humoral, and protective mucosal responses. However, CCR5(-/-)-immune mice produced increased levels of CCL5 in protected gastric tissues, suggesting compensatory signaling through additional receptors. Neutralization of CCL5 in CCR5(-/-)-immune mice resulted in decreased mucosal inflammatory responses, reduced T. cruzi-specific Ab-secreting cells, and significantly less mucosal T. cruzi protection, confirming an important role for CCL5 in optimal immune control of T. cruzi replication at the point of initial mucosal invasion. To investigate further the mechanism responsible for mucosal protection mediated by CCL5-CCR5 signaling, we evaluated the effects of CCL5 on B cells. CCL5 enhanced proliferation and IgM secretion in highly purified B cells triggered by suboptimal doses of LPS. In addition, neutralization of endogenous CCL5 inhibited B cell proliferation and IgM secretion during stimulation of highly purified B cells, indicating that B cell production of CCL5 has important autocrine effects. These findings demonstrate direct effects of CCL5 on B cells, with significant implications for the development of mucosal adjuvants, and further suggest that CCL5 may be important as a general B cell coactivator.  相似文献   
92.
93.
Basal bodies organize the nine doublet microtubules found in cilia. Cilia are required for a variety of cellular functions, including motility and sensing stimuli. Understanding this biochemically complex organelle requires an inventory of the molecular components and the contribution each makes to the overall structure. We define a basal body proteome and determine the specific localization of basal body components in the ciliated protozoan Tetrahymena thermophila. Using a biochemical, bioinformatic, and genetic approach, we identify 97 known and candidate basal body proteins. 24 novel T. thermophila basal body proteins were identified, 19 of which were localized to the ultrastructural level, as seen by immunoelectron microscopy. Importantly, we find proteins from several structural domains within the basal body, allowing us to reveal how each component contributes to the overall organization. Thus, we present a high resolution localization map of basal body structure highlighting important new components for future functional studies.  相似文献   
94.
95.
Researchers have used transmission electron microscopy (TEM) to make contributions to cell biology for well over 50 years, and TEM continues to be an important technology in our field. We briefly present for the neophyte the components of a TEM-based study, beginning with sample preparation through imaging of the samples. We point out the limitations of TEM and issues to be considered during experimental design. Advanced electron microscopy techniques are listed as well. Finally, we point potential new users of TEM to resources to help launch their project.Transmission electron microscopy (TEM) has been an important technology in cell biology ever since it was first used in the early 1940s. The most frequently used TEM application in cell biology entails imaging stained thin sections of plastic-embedded cells by passage of an electron beam through the sample such that the beam will be absorbed and scattered, producing contrast and an image (see
TermDefinition
Beem capsulePlastic forms that hold samples in resin during polymerization
Blocks (bullets)Polymerized samples in plastic removed from the Beem capsule and ready to section
Block faceSmall surface trimmed on a block before sectioning
BoatWater reservoir in which sections float after being cut by a knife
CLEMCorrelative light and electron microscopy
DehydrationRemoval of water from a sample by replacement with solvent
Electron tomography (ET)A method to image thick sections (200–300 nm) and produce three-dimensional images
EmbeddingProcess of infiltrating the sample with resin
FixationSample preservation with low temperature and/or chemicals to maintain sample integrity
GridSmall metal support that holds the sections for viewing in the electron microscope
HPF/FSHigh-pressure freezing/freeze substitution sample preparation technique
Immuno-EMDetection of proteins in EM samples using antibodies
In-FXXKing credible!!!!Actual user quote in response to particularly beautiful sample. You may embellish with your own words.
KnifeA very sharp edge, either glass or diamond, used to slice off resin-embedded samples into sections
Pre-embedding labelingApplication of antibodies before fixation and embedding
Post-embedding labelingApplication of antibodies to sections on the grid
PoststainingStaining with heavy metals of sections on a grid
ResinLiquid form of the plastics used for embedding
RibbonCollection of serial sections placed on the grid
Serials sectionsOne-after-the-other thin sections in a ribbon
TEMTransmission electron microscopy
Thin sectionsThe 60- to 70-nm sections cut from the samples in blocks
TrimmingProcess of cutting away excess resin to create a block face
UltramicrotomeInstrument used to cut sections
Vitrification/vitreous iceUnordered ice in which samples can be viewed without fix or stain
Open in a separate windowTEM has proven valuable in the analysis of nearly every cellular component, including the cytoskeleton, membrane systems, organelles, and cilia, as well as specialized structures in differentiated cells, such as microvilli and the synaptonemal complex. There is simply no way to visualize the complexity of cells and see cellular structures without TEM. Despite its power, the use of TEM does have limitations. Among the limitations are the relatively small data set of cells that can be imaged in detail, the obligate use of fixed—therefore deceased—cells, and the ever-present potential for fixation and staining artifacts. However, many of these artifacts are well known and have been catalogued (e.g., Bozzola and Russell, 1999 ; Maunsbach and Afzelius, 1999) .A typical TEM experiment consists of two phases: the live-cell experiment, in which a cell type, possibly a mutant, is grown under given conditions for analysis, followed by preparation of the specimen and imaging by TEM. Specimen preparation for conventional TEM is comprehensively reviewed in Hayat (1970) and briefly described here (Figure 1).Open in a separate windowFIGURE 1:A brief flowchart showing the work to be done with different types of sample preparation for conventional electron microscopy (yellow background). The advanced cryo-EM techniques are shown with a blue background. For immuno-EM, the samples can be stained before embedding (pre-embedding staining) or the sections can be stained (post-embedding staining).  相似文献   
96.
MicroRNA-3148 modulates differential gene expression of the SLE-associated <Emphasis Type="Italic">TLR7</Emphasis> variant     
Y Deng  J Zhao  D Sakurai  KM Kaufman  JC Edberg  RP Kimberly  DL Kamen  GS Gilkeson  CO Jacob  RH Scofield  CD Langefeld  JA Kelly  ME Alarcón-Riquelme  BIOLUPUS  GENLES Networks  JB Harley  TJ Vyse  BI Freedman  PM Gaffney  KM Sivils  JA James  TB Niewold  RM Cantor  W Chen  BH Hahn  EE Brown  PROFILE  BP Tsao 《Arthritis research & therapy》2012,14(Z3):A5
  相似文献   
97.
Confronting the Gordian knot     
Giddings LV  Potrykus I  Ammann K  Fedoroff NV 《Nature biotechnology》2012,30(3):208-209
  相似文献   
98.
Ultra-Structure database design methodology for managing systems biology data and analyses     
Christopher W Maier  Jeffrey G Long  Bradley M Hemminger  Morgan C Giddings 《BMC bioinformatics》2009,10(1):254-22

Background  

Modern, high-throughput biological experiments generate copious, heterogeneous, interconnected data sets. Research is dynamic, with frequently changing protocols, techniques, instruments, and file formats. Because of these factors, systems designed to manage and integrate modern biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve. The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution to this problem. By representing both data and processes as formal rules within a database, an Ultra-Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge in both a machine- and human-readable form. End users themselves can change the system's capabilities without programmer intervention, simply by altering database contents; no computer code or schemas need be modified. This provides flexibility in adapting to change, and allows integration of disparate, heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research program for the integration of large proteomic and genomic data sets (proteogenomic mapping).  相似文献   
99.
Alkaline cooking and tortilla quality in maize grains from the humid,tropical lands of Mexico     
Jiménez-Juárez JA  G Arámbula-Villa  E de la Cruz-Lázaro  MA Aparicio-Trapala 《Phyton》2015,84(1):1-7
Maize (Zea mays L.) tortilla is the major staple food for the Mexican population. Nine tropical maize genotypes were evaluated. All samples had white grains, a common characteristic in tropical maize, and therefore they were appropriate for nixtamalized flour industry. Grain, flour, masa and tortilla characteristics of each maize genotype were evaluated. Length, width, thickness, weight of 1000 grains and hardness of grain were determined. Moisture content, proteins, fat, ash, mean particle size, water absorption index, enthalpy, and flour temperature were also evaluated. Adhesiveness and cohesiveness were evaluated in masa. Moisture content, protein, capacity to puff up, roll making, tension and cutting strength were determined in tortillas. There were significant differences (p≤0.05) in most of the evaluated characteristics. Grain length values varied between 9.26 and 11.02 mm for populations 23 and 22, respectively. Grain hardness oscillated between 11.17 (population 32) and 14.75 (landrace Mejen). According to the weight of 1000 grains most genotypes had small grains. The minimum and maximum moisture values of flour and tortillas were 8.33-9.99% and 46.20-50.36%, respectively. The texture of tortillas elaborated from population 32 and landrace Mejen had the lowest tension and cutting strength, resulting the best genotypes for making tortilla.  相似文献   
100.
Yeast Dam1p Is Required to Maintain Spindle Integrity during Mitosis and Interacts with the Mps1p Kinase          下载免费PDF全文
Michele H. Jones  Jeffrey B. Bachant  Andrea R. Castillo  Thomas H. Giddings  Jr.    Mark Winey 《Molecular biology of the cell》1999,10(7):2377-2391
We have identified a mutant allele of the DAM1 gene in a screen for mutations that are lethal in combination with the mps1-1 mutation. MPS1 encodes an essential protein kinase that is required for duplication of the spindle pole body and for the spindle assembly checkpoint. Mutations in six different genes were found to be lethal in combination with mps1-1, of which only DAM1 was novel. The remaining genes encode a checkpoint protein, Bub1p, and four chaperone proteins, Sti1p, Hsc82p, Cdc37p, and Ydj1p. DAM1 is an essential gene that encodes a protein recently described as a member of a microtubule binding complex. We report here that cells harboring the dam1-1 mutation fail to maintain spindle integrity during anaphase at the restrictive temperature. Consistent with this phenotype, DAM1 displays genetic interactions with STU1, CIN8, and KAR3, genes encoding proteins involved in spindle function. We have observed that a Dam1p-Myc fusion protein expressed at endogenous levels and localized by immunofluorescence microscopy, appears to be evenly distributed along short mitotic spindles but is found at the spindle poles at later times in mitosis.  相似文献   
[首页] « 上一页 [5] [6] [7] [8] [9] 10 [11] [12] [13] [14] [15] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号