首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   51篇
  2019年   2篇
  2018年   2篇
  2017年   6篇
  2016年   9篇
  2015年   14篇
  2014年   19篇
  2013年   10篇
  2012年   12篇
  2011年   9篇
  2010年   7篇
  2009年   11篇
  2008年   7篇
  2007年   8篇
  2006年   9篇
  2005年   12篇
  2004年   8篇
  2003年   3篇
  2002年   8篇
  2001年   12篇
  2000年   14篇
  1999年   8篇
  1998年   8篇
  1997年   10篇
  1996年   8篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   5篇
  1975年   4篇
  1974年   4篇
  1973年   4篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1963年   2篇
  1957年   1篇
  1934年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
151.
152.
An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA‐dominated/TATA‐box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA‐like promoters that depend on the same activator Hsf1. Regulatability is therefore an inherent property of promoter class. Further analyses show that SAGA/TATA‐box promoters are more dynamic because TATA‐binding protein recruitment through SAGA is susceptible to removal by Mot1. In addition, the nucleosome configuration upon activator depletion shifts on SAGA/TATA‐box promoters and seems less amenable to preinitiation complex formation. The results explain the fundamental difference between housekeeping and regulatable genes, revealing an additional facet of combinatorial control: an activator can elicit a different response dependent on core promoter class.  相似文献   
153.
154.
Separation of duplicated centrosomes (spindle-pole bodies or SPBs in yeast) is a crucial step in the biogenesis of the mitotic spindle. In vertebrates, centrosome separation requires the BimC family kinesin Eg5 and the activities of Cdk1 and polo kinase; however, the roles of these kinases are not fully understood. In Saccharomyces cerevisiae, SPB separation also requires activated Cdk1 and the plus-end kinesins Cin8 (homologous to vertebrate Eg5) and Kip1. Here we report that polo kinase has a role in the separation of SPBs. We show that adequate accumulation of Cin8 and Kip1 requires inactivation of the anaphase-promoting complex-activator Cdh1 through sequential phosphorylation by Cdk1 and polo kinase. In this process, Cdk1 functions as a priming kinase in that Cdk1-mediated phosphorylation creates a binding site for polo kinase,which further phosphorylates Cdh1. Thus, Cdh1 inactivation through the synergistic action of Cdk1 and polo kinase provides a new model for inactivation of cell-cycle effectors.  相似文献   
155.
Here we describe a method for gross staining of gray matter in slices of formaldehyde-fixed human brain. After protection of white matter with 4% phenol at 60°C for 5 min followed by a cold water wash, the gray matter was stained for 10-15 min at 20-25°C with 1% aqueous copper(II) phthalocyanine tetrasulfonic acid tetrasodium salt (CPTS). The staining resisted all attempts to be washed from the gray matter. Stained slices can be stored indefinitely in slightly acidified water, or plastinated as permanent dry specimens.  相似文献   
156.
The RECODE database is a compilation of 'programmed' translational recoding events taken from the scientific literature and personal communications. The database deals with programmed ribosomal frameshifting, codon redefinition and translational bypass occurring in a variety of organisms. The entries for each event include the sequences of the corresponding genes, their encoded proteins for both the normal and alternate decoding, the types of the recoding events involved, trans-factors and cis-elements that influence recoding. The database is freely available at http://recode.genetics. utah.edu/.  相似文献   
157.
Preble AM  Giddings TH  Dutcher SK 《Genetics》2001,157(1):163-181
bld2-1 mutant Chlamydomonas reinhardtii strains assemble basal bodies with singlet microtubules; bld2-1 cells display flagellar assembly defects as well as positioning defects of the mitotic spindle and cleavage furrow. To further understand the role of the BLD2 gene, we have isolated three new bld2 alleles and three partially dominant extragenic suppressors, rgn1-1, rgn1-2, and rgn1-3. bld2 rgn1-1 strains have phenotypes intermediate between those of bld2 and wild-type strains with respect to flagellar number, microtubule rootlet organization, cleavage furrow positioning, and basal body structural phenotypes. Instead of the triplet microtubules of wild-type cells, bld2 rgn1-1 basal bodies have mixtures of no, singlet, doublet, and triplet microtubules. The bld2-4 allele was made by insertional mutagenesis and identified in a noncomplementation screen in a diploid strain. The bld2-4 allele has a lethal phenotype based on mitotic segregation in diploid strains and in haploid strains generated by meiotic recombination. The lethal phenotype in haploid strains is suppressed by rgn1-1; these suppressed strains have similar phenotypes to other bld2 rgn1-1 double mutants. It is likely that BLD2 is an essential gene that is needed for basal body assembly and function.  相似文献   
158.
Spontaneous coronary artery dissection is a rare cause of myocardial ischemia or sudden cardiac death. We describe a patient with polycythemia vera and a chronic spontaneous coronary artery dissection who was treated with successful angioplasty and long stenting.  相似文献   
159.
Improved methods of specimen preparation and dual-axis electron tomography have been used to study the structure and organization of basal bodies in the unicellular alga Chlamydomonas reinhardtii. Novel structures have been found in both wild type and strains with mutations that affect specific tubulin isoforms. Previous studies have shown that strains lacking delta-tubulin fail to assemble the C-tubule of the basal body. Tomographic reconstructions of basal bodies from the delta-tubulin deletion mutant uni3-1 have confirmed that basal bodies contain mostly doublet microtubules. Our methods now show that the stellate fibers, which are present only in the transition zone of wild-type cells, repeat within the core of uni3-1 basal bodies. The distal striated fiber is incomplete in this mutant, rootlet microtubules can be misplaced, and multiflagellate cells have been observed. A suppressor of uni3-1, designated tua2-6, contains a mutation in alpha-tubulin. tua2-6; uni3-1 cells build both flagella, yet they retain defects in basal body structure and in rootlet microtubule positioning. These data suggest that the presence of specific tubulin isoforms in Chlamydomonas directly affects the assembly and function of both basal bodies and basal body-associated structures.  相似文献   
160.
Both the spindle pole body (SPB) and the nuclear pore complex (NPC) are essential organelles embedded in the nuclear envelope throughout the life cycle of the budding yeast Saccharomyces cerevisiae. However, the mechanism by which these two multisubunit structures are inserted into the nuclear envelope during their biogenesis is not well understood. We have previously shown that Ndc1p is the only known integral membrane protein that localizes to both the SPBs and the NPCs and is required for SPB duplication. For this study, we generated a novel temperature-sensitive (ts) allele of NDC1 to investigate the role of Ndc1p at the NPCs. Yeast cells carrying this allele (ndc1-39) failed to insert the SPB into the nuclear envelope at the restrictive temperature. Importantly, the double mutation of ndc1-39 and NPC assembly mutant nic96-1 resulted in cells with enhanced growth defects. While nuclear protein import and NPC distribution in the nuclear envelope were unaffected, ndc1-39 mutants failed to properly incorporate the nucleoporin Nup49p into NPCs. These results provide evidence that Ndc1p is required for NPC assembly in addition to its role in SPB duplication. We postulate that Ndc1p is crucial for the biogenesis of both the SPBs and the NPCs at the step of insertion into the nuclear envelope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号