首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   37篇
  164篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   4篇
  2012年   5篇
  2011年   6篇
  2010年   1篇
  2009年   8篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2002年   7篇
  2001年   8篇
  2000年   10篇
  1999年   3篇
  1998年   2篇
  1997年   7篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1963年   2篇
  1957年   1篇
排序方式: 共有164条查询结果,搜索用时 0 毫秒
51.
The MPS1 gene from Saccharomyces cerevisiae encodes an essential protein kinase required for spindle pole body (SPB) duplication and for the mitotic spindle assembly checkpoint. Cells with the mps1-1 mutation fail early in SPB duplication and proceed through monopolar mitosis with lethal consequences. We identified CDC37 as a multicopy suppressor of mps1-1 temperature-sensitive growth. Suppression is allele specific, and synthetic lethal interactions occur between mps1 and cdc37 alleles. We examined the cdc37-1 phenotype for defects related to the SPB cycle. The cdc37-1 temperature-sensitive allele causes unbudded, G1 arrest at Start (Reed, S.I. 1980. Genetics. 95: 561–577). Reciprocal shifts demonstrate that cdc37-1 arrest is interdependent with α-factor arrest but is not a normal Start arrest. Although the cells are responsive to α-factor at the arrest, SPB duplication is uncoupled from other aspects of G1 progression and proceeds past the satellite-bearing SPB stage normally seen at Start. Electron microscopy reveals side-by-side SPBs at cdc37-1 arrest. The outer plaque of one SPB is missing or reduced, while the other is normal. Using the mps2-1 mutation to distinguish between the SPBs, we find that the outer plaque defect is specific to the new SPB. This phenotype may arise in part from reduced Mps1p function: although Mps1p protein levels are unaffected by the cdc37-1 mutation, kinase activity is markedly reduced. These data demonstrate a requirement for CDC37 in SPB duplication and suggest a role for this gene in G1 control. CDC37 may provide a chaperone function that promotes the activity of protein kinases.  相似文献   
52.
Transgenic plants as factories for biopharmaceuticals   总被引:33,自引:0,他引:33  
Plants have considerable potential for the production of biopharmaceutical proteins and peptides because they are easily transformed and provide a cheap source of protein. Several biotechnology companies are now actively developing, field testing, and patenting plant expression systems, while clinical trials are proceeding on the first biopharmaceuticals derived from them. One transgenic plant-derived biopharmaceutical, hirudin, is now being commercially produced in Canada for the first time. Product purification is potentially an expensive process, and various methods are currently being developed to overcome this problem, including oleosin-fusion technology, which allows extraction with oil bodies. In some cases, delivery of a biopharmaceutical product by direct ingestion of the modified plant potentially removes the need for purification. Such biopharmaceuticals and edible vaccines can be stored and distributed as seeds, tubers, or fruits, making immunization programs in developing countries cheaper and potentially easier to administer. Some of the most expensive biopharmaceuticals of restricted availability, such as glucocerebrosidase, could become much cheaper and more plentiful through production in transgenic plants.  相似文献   
53.
All positive-strand RNA viruses of eukaryotes studied assemble RNA replication complexes on the surfaces of cytoplasmic membranes. Infection of mammalian cells with poliovirus and other picornaviruses results in the accumulation of dramatically rearranged and vesiculated membranes. Poliovirus-induced membranes did not cofractionate with endoplasmic reticulum (ER), lysosomes, mitochondria, or the majority of Golgi-derived or endosomal membranes in buoyant density gradients, although changes in ionic strength affected ER and virus-induced vesicles, but not other cellular organelles, similarly. When expressed in isolation, two viral proteins of the poliovirus RNA replication complex, 3A and 2C, cofractionated with ER membranes. However, in cells that expressed 2BC, a proteolytic precursor of the 2B and 2C proteins, membranes identical in buoyant density to those observed during poliovirus infection were formed. When coexpressed with 2BC, viral protein 3A was quantitatively incorporated into these fractions, and the membranes formed were ultrastructurally similar to those in poliovirus-infected cells. These data argue that poliovirus-induced vesicles derive from the ER by the action of viral proteins 2BC and 3A by a mechanism that excludes resident host proteins. The double-membraned morphology, cytosolic content, and apparent ER origin of poliovirus-induced membranes are all consistent with an autophagic origin for these membranes.  相似文献   
54.
Sporulation in yeast requires that a modified form of chromosome segregation be coupled to the development of a specialized cell type, a process akin to gametogenesis. Mps1p is a dual-specificity protein kinase essential for spindle pole body (SPB) duplication and required for the spindle assembly checkpoint in mitotically dividing cells. Four conditional mutant alleles of MPS1 disrupt sporulation, producing two distinct phenotypic classes. Class I alleles of mps1 prevent SPB duplication at the restrictive temperature without affecting premeiotic DNA synthesis and recombination. Class II MPS1 alleles progress through both meiotic divisions in 30-50% of the population, but the asci are incapable of forming mature spores. Although mutations in many other genes block spore wall formation, the cells produce viable haploid progeny, whereas mps1 class II spores are unable to germinate. We have used fluorescently marked chromosomes to demonstrate that mps1 mutant cells have a dramatically increased frequency of chromosome missegregation, suggesting that loss of viability is due to a defect in spindle function. Overall, our cytological data suggest that MPS1 is required for meiotic SPB duplication, chromosome segregation, and spore wall formation.  相似文献   
55.
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G(1) by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G(1) transition to control cyclin-CDK inactivation and cytokinesis.  相似文献   
56.
Structures which may establish cytoplasmic continuity between adjacent cells of filamentous cyanobacteria have been observed by freeze-fracture electron microscopy. They are visible in the septum region of the plasma membrane as pits on the E-face (EF) and corresponding protrusions on the P-face (PF). Between 100 and 250 of these structures, termed microplasmodesmata, were present between adjacent vegetative cells in all four strains of heterocyst-forming filamentous cyanobacteria, Anabaena cylindrica Lemm, A. variabilis (IUCC B377), A. variabilis Kütz. (ATCC 29413) and Nostoc muscorum, examined. Only 30–40 microplasmodesmata were observed between adjacent cells in two species, Phormidium luridum and Plectonema boryanum, that do not form heterocysts. The results suggest that in species that form heterocysts a greater degree of cytoplasmic continuity is established, presumably to facilitate the exchange of metabolites. In species capable of forming heterocysts, the number of microplasmodesmata per septum between two adjacent vegetative cells remained constant whether the filaments were grown in the presence of NH4 and lacked heteroxysts or under N2-fixing conditions and contained heterocysts. When a vegetative cell differentiates into a heterocyst, about 80% of the existing microplasmodesmata are destroyed as the poles of the cell become constricted into narrow necks leaving smaller areas of contact with the adjacent vegetative cells.  相似文献   
57.
We have identified a mutant allele of the DAM1 gene in a screen for mutations that are lethal in combination with the mps1-1 mutation. MPS1 encodes an essential protein kinase that is required for duplication of the spindle pole body and for the spindle assembly checkpoint. Mutations in six different genes were found to be lethal in combination with mps1-1, of which only DAM1 was novel. The remaining genes encode a checkpoint protein, Bub1p, and four chaperone proteins, Sti1p, Hsc82p, Cdc37p, and Ydj1p. DAM1 is an essential gene that encodes a protein recently described as a member of a microtubule binding complex. We report here that cells harboring the dam1-1 mutation fail to maintain spindle integrity during anaphase at the restrictive temperature. Consistent with this phenotype, DAM1 displays genetic interactions with STU1, CIN8, and KAR3, genes encoding proteins involved in spindle function. We have observed that a Dam1p-Myc fusion protein expressed at endogenous levels and localized by immunofluorescence microscopy, appears to be evenly distributed along short mitotic spindles but is found at the spindle poles at later times in mitosis.  相似文献   
58.
The three-dimensional organization of mitotic microtubules in a mutant strain of Saccharomyces cerevisiae has been studied by computer-assisted serial reconstruction. At the nonpermissive temperature, cdc20 cells arrested with a spindle length of approximately 2.5 microns. These spindles contained a mean of 81 microtubules (range, 56-100) compared with 23 in wild-type spindles of comparable length. This increase in spindle microtubule number resulted in a total polymer length up to four times that of wild-type spindles. The spindle pole bodies in the cdc20 cells were approximately 2.3 times the size of wild-type, thereby accommodating the abnormally large number of spindle microtubules. The cdc20 spindles contained a large number of interpolar microtubules organized in a "core bundle." A neighbor density analysis of this bundle at the spindle midzone showed a preferred spacing of approximately 35 nm center-to-center between microtubules of opposite polarity. Although this is evidence of specific interaction between antiparallel microtubules, mutant spindles were less ordered than the spindle of wild-type cells. The number of noncore microtubules was significantly higher than that reported for wild-type, and these microtubules did not display a characteristic metaphase configuration. cdc20 spindles showed significantly more cross-bridges between spindle microtubules than were seen in the wild type. The cross-bridge density was highest between antiparallel microtubules. These data suggest that spindle microtubules are stabilized in cdc20 cells and that the CDC20 gene product may be involved in cell cycle processes that promote spindle microtubule disassembly.  相似文献   
59.
Repetitive, acute inflammatory insults elicited by cigarette smoke (CS) contribute to the development of chronic obstructive pulmonary disease (COPD), a disorder associated with lung inflammation and mucus hypersecretion. Presently, there is a poor understanding of the acute inflammatory mechanisms involved in this process. The aims of this study were to develop an acute model to investigate temporal inflammatory changes occurring after CS exposure. Rats were exposed to whole body CS (once daily) generated from filtered research cigarettes. Initial studies indicated the generation of a neutrophilic/mucus hypersecreting lung phenotype in <4 days. Subsequent studies demonstrated that just two exposures to CS (15 h apart) elicited a robust inflammatory/mucus hypersecretory phenotype that was used to investigate mechanisms driving this response. Cytokine-induced neutrophil chemoattractants (CINCs) 1-3, the rat growth-related oncogene-alpha family homologs, and IL-1beta demonstrated time-dependent increases in lung tissue or lavage fluid over the 24-h period following CS exposure. The temporal changes in the neutrophil chemokines, CINCs 1-3, mirrored increases in neutrophil infiltration, indicative of a role in neutrophil migration. In addition, a specific CXCR2 antagonist, SB-332235, effectively inhibited CS-induced neutrophilia in a dose-dependent manner, supporting this conclusion. This modeling of the response of the rat airways to acute CS exposure indicates 1) as few as two exposures to CS will induce a phenotype with similarities to COPD and 2) a novel role for CINCs in the generation of this response. These observations represent a paradigm for the study of acute, repetitive lung insults that contribute to the development of chronic disease.  相似文献   
60.
Subversion of cellular autophagosomal machinery by RNA viruses   总被引:10,自引:0,他引:10       下载免费PDF全文
Infection of human cells with poliovirus induces the proliferation of double-membraned cytoplasmic vesicles whose surfaces are used as the sites of viral RNA replication and whose origin is unknown. Here, we show that several hallmarks of cellular autophagosomes can be identified in poliovirus-induced vesicles, including colocalization of LAMP1 and LC3, the human homolog of Saccharomyces cerevisiae Atg8p, and staining with the fluorophore monodansylcadaverine followed by fixation. Colocalization of LC3 and LAMP1 was observed early in the poliovirus replicative cycle, in cells infected with rhinoviruses 2 and 14, and in cells that express poliovirus proteins 2BC and 3A, known to be sufficient to induce double-membraned vesicles. Stimulation of autophagy increased poliovirus yield, and inhibition of the autophagosomal pathway by 3-methyladenine or by RNA interference against mRNAs that encode two different proteins known to be required for autophagy decreased poliovirus yield. We propose that, for poliovirus and rhinovirus, components of the cellular machinery of autophagosome formation are subverted to promote viral replication. Although autophagy can serve in the innate immune response to microorganisms, our findings are inconsistent with a role for the induced autophagosome-like structures in clearance of poliovirus. Instead, we argue that these double-membraned structures provide membranous supports for viral RNA replication complexes, possibly enabling the nonlytic release of cytoplasmic contents, including progeny virions, from infected cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号