首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   117篇
  2019年   8篇
  2018年   11篇
  2017年   6篇
  2016年   14篇
  2015年   26篇
  2014年   22篇
  2013年   48篇
  2012年   37篇
  2011年   32篇
  2010年   28篇
  2009年   23篇
  2008年   28篇
  2007年   22篇
  2006年   35篇
  2005年   25篇
  2004年   26篇
  2003年   22篇
  2002年   20篇
  2001年   20篇
  2000年   17篇
  1999年   16篇
  1998年   9篇
  1997年   7篇
  1996年   10篇
  1995年   6篇
  1994年   5篇
  1992年   24篇
  1991年   18篇
  1990年   14篇
  1989年   14篇
  1988年   12篇
  1987年   14篇
  1986年   16篇
  1985年   18篇
  1984年   15篇
  1983年   12篇
  1982年   5篇
  1981年   7篇
  1980年   8篇
  1979年   19篇
  1977年   7篇
  1976年   13篇
  1975年   6篇
  1974年   10篇
  1973年   17篇
  1972年   8篇
  1970年   5篇
  1969年   6篇
  1965年   6篇
  1930年   5篇
排序方式: 共有892条查询结果,搜索用时 31 毫秒
81.
The Galápagos giant tortoise is an icon of the unique, endemic biodiversity of Galápagos, but little is known of its parasitic fauna. We assessed the diversity of parasitic nematode communities and their spatial distributions within four wild tortoise populations comprising three species across three Galápagos islands, and consider their implication for Galápagos tortoise conservation programmes. Coprological examinations revealed nematode eggs to be common, with more than 80% of tortoises infected within each wild population. Faecal samples from tortoises within captive breeding centres on Santa Cruz, Isabela and San Cristobal islands also were examined. Five different nematode egg types were identified: oxyuroid, ascarid, trichurid and two types of strongyle. Sequencing of the 18S small-subunit ribosomal RNA gene from adult nematodes passed with faeces identified novel sequences indicative of rhabditid and ascaridid species. In the wild, the composition of nematode communities varied according to tortoise species, which co-varied with island, but nematode diversity and abundance were reduced or altered in captive-reared animals. Evolutionary and ecological factors are likely responsible for the variation in nematode distributions in the wild. This possible species/island-parasite co-evolution has not been considered previously for Galápagos tortoises. We recommend that conservation efforts, such as the current Galápagos tortoise captive breeding/rearing and release programme, be managed with respect to parasite biogeography and host-parasite co-evolutionary processes in addition to the biogeography of the host.  相似文献   
82.
83.
Brain-penetrable proline amides were developed as 5HT2c agonists with more than 1000-fold binding selectivity against 5HT2b receptor. After medicinal chemistry optimization and SAR studies, orally active proline amides with robust efficacy in a rodent food intake inhibition model were uncovered.  相似文献   
84.
Based on our original pyrazine hit, CP-0809101, novel conformationally-restricted 5HT2c receptor agonists with 2-piperazin-azaindane scaffold were designed. Synthesis and structure–activity relationship (SAR) studies are described with emphasis on optimization of the selectivity against 5HT2a and 5HT2b receptors with excellent 2c potency. Orally-active and selective compounds were identified with dose–responsive in vivo efficacy in our pre-clinical food intake model.  相似文献   
85.
Bartonellae were detected in a total of 152 (23.7%) of 642 tissues from 108 (48.4%) of 223 small mammals trapped in several urban areas of Nepal. Based on rpoB and gltA sequence analyses, genotypes belonging to seven known Bartonella species and five genotypes not belonging to previously known species were identified in these animals.  相似文献   
86.
87.
88.
89.
Rotavirus NSP4, initially characterized as an endoplasmic reticulum intracellular receptor, is a multifunctional viral enterotoxin that induces diarrhea in murine pups. There have been recent reports of the secretion of a cleaved NSP4 fragment (residues 112 to 175) and of the association of NSP4 with LC3-positive autophagosomes, raft membranes, and microtubules. To determine if NSP4 traffics to a specific subset of rafts at the plasma membrane, we isolated caveolae from plasma membrane-enriched material that yielded caveola membranes free of endoplasmic reticulum and nonraft plasma membrane markers. Analyses of the newly isolated caveolae from rotavirus-infected MDCK cells revealed full-length, high-mannose glycosylated NSP4. The lack of Golgi network-specific processing of the caveolar NSP4 glycans supports studies showing that NSP4 bypasses the Golgi apparatus. Confocal imaging showed the colocalization of NSP4 with caveolin-1 early and late in infection, elucidating the temporal and spatial NSP4-caveolin-1 association during infection. These data were extended with fluorescent resonance energy transfer analyses that confirmed the NSP4 and caveolin-1 interaction in that the specific fluorescently tagged antibodies were within 10 nm of each other during infection. Cells transfected with NSP4 showed patterns of staining and colocalization with caveolin-1 similar to those of infected cells. This study presents an endoplasmic reticulum contaminant-free caveola isolation protocol; describes the presence of full-length, endoglycosidase H-sensitive NSP4 in plasma membrane caveolae; provides confirmation of the NSP4-caveolin interaction in the presence and absence of other viral proteins; and provides a final plasma membrane destination for Golgi network-bypassing NSP4 transport.  相似文献   
90.
Extreme skewing of X-chromosome inactivation (XCI) is rare in the normal female population but is observed frequently in carriers of some X-linked mutations. Recently, it has been shown that various forms of X-linked mental retardation (XLMR) have a strong association with skewed XCI in female carriers, but the mechanisms underlying this skewing are unknown. ATR-X syndrome, caused by mutations in a ubiquitously expressed, chromatin-associated protein, provides a clear example of XLMR in which phenotypically normal female carriers virtually all have highly skewed XCI biased against the X chromosome that harbors the mutant allele. Here, we have used a mouse model to understand the processes causing skewed XCI. In female mice heterozygous for a null Atrx allele, we found that XCI is balanced early in embryogenesis but becomes skewed over the course of development, because of selection favoring cells expressing the wild-type Atrx allele. Unexpectedly, selection does not appear to be the result of general cellular-viability defects in Atrx-deficient cells, since it is restricted to specific stages of development and is not ongoing throughout the life of the animal. Instead, there is evidence that selection results from independent tissue-specific effects. This illustrates an important mechanism by which skewed XCI may occur in carriers of XLMR and provides insight into the normal role of ATRX in regulating cell fate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号