首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3602篇
  免费   317篇
  国内免费   2篇
  2023年   16篇
  2022年   23篇
  2021年   63篇
  2020年   33篇
  2019年   50篇
  2018年   94篇
  2017年   81篇
  2016年   104篇
  2015年   169篇
  2014年   209篇
  2013年   269篇
  2012年   306篇
  2011年   264篇
  2010年   177篇
  2009年   163篇
  2008年   229篇
  2007年   210篇
  2006年   221篇
  2005年   206篇
  2004年   208篇
  2003年   198篇
  2002年   181篇
  2001年   42篇
  2000年   27篇
  1999年   38篇
  1998年   42篇
  1997年   27篇
  1996年   30篇
  1995年   33篇
  1994年   21篇
  1993年   22篇
  1992年   13篇
  1991年   14篇
  1990年   14篇
  1989年   21篇
  1988年   13篇
  1987年   7篇
  1986年   6篇
  1985年   6篇
  1984年   5篇
  1983年   6篇
  1982年   9篇
  1981年   6篇
  1980年   8篇
  1979年   4篇
  1978年   8篇
  1977年   3篇
  1976年   4篇
  1974年   3篇
  1960年   3篇
排序方式: 共有3921条查询结果,搜索用时 15 毫秒
161.
The [URE3] phenotype in Saccharomyces cerevisiae propagates by a prion mechanism, involving the aggregation of the normally soluble and highly helical protein Ure2. Previous data have shown that the protein spontaneously forms in vitro long, straight, insoluble fibrils at neutral pH that are similar to amyloids in that they bind Congo red and show green-yellow birefringence and have an increased resistance to proteolysis. These fibrils are not amyloids as they are devoid of a cross-beta core. Here we further document the mechanism of assembly of Ure2p into fibrils. The critical concentration for Ure2p assembly is measured, and the minimal size of the nuclei that are the precursors of Ure2p fibrils is determined. Our data indicate that the assembly process is irreversible. As a consequence, the critical concentration is very low. By analyzing the elongation rates of preformed fibrils and combining the results with single-fiber imaging experiments of a variant Ure2p labeled by fluorescent dyes, we reveal the polarity of the fibrils and differences in the elongation rates at their ends. These results bring novel insight in the process of Ure2p assembly into fibrils and the mechanism of propagation of yeast prions.  相似文献   
162.
Filamentous inclusions of alpha-synuclein protein are hallmarks of neurodegenerative diseases collectively known as synucleinopathies. Previous studies have shown that exposure to oxidative and nitrative species stabilizes alpha-synuclein filaments in vitro, and this stabilization may be due to dityrosine cross-linking. To test this hypothesis, we mutated tyrosine residues to phenylalanine and generated recombinant wild type and mutant alpha-synuclein proteins. alpha-Synuclein proteins lacking some or all tyrosine residues form fibrils to the same extent as the wild type protein. Tyrosine residues are not required for protein cross-linking or filament stabilization resulting from transition metal-mediated oxidation, because higher Mr SDS-resistant oligomers and filaments stable to chaotropic agents are detected using all Tyr --> Phe alpha-synuclein mutants. By contrast, cross-linking resulting from exposure to nitrating agents required the presence of one or more tyrosine residues. Furthermore, tyrosine cross-linking is involved in filament stabilization, because nitrating agent-exposed assembled wild type, but not mutant alpha-synuclein lacking all tyrosine residues, was stable to chaotropic treatment. In addition, the formation of stable alpha-synuclein inclusions in intact cells after exposure to oxidizing and nitrating species requires tyrosine residues. These findings demonstrate that nitrative and/or oxidative stress results in distinct mechanisms of alpha-synuclein protein modifications that can influence the formation of stable alpha-synuclein fibrils.  相似文献   
163.
Despite the pivotal role of ryanodine in ryanodine receptor (RyR) research, the molecular basis of ryanodine-RyR interaction remains largely undefined. We investigated the role of the proposed transmembrane helix TM10 in ryanodine interaction and channel function. Each amino acid residue within the TM10 sequence, 4844IIFDITFFFFVIVILLAIIQGLII4867, of the mouse RyR2 was mutated to either alanine or glycine. Mutants were expressed in human embryonic kidney 293 cells, and their properties were assessed. Mutations D4847A, F4850A, F4851A, L4858A, L4859A, and I4866A severely curtailed the release of intracellular Ca2+ in human embryonic kidney 293 cells in response to extracellular caffeine and diminished [3H]ryanodine binding to cell lysates. Mutations F4846A, T4849A, I4855A, V4856A, and Q4863A eliminated or markedly reduced [3H]ryanodine binding, but cells expressing these mutants responded to extracellular caffeine by releasing stored Ca2+. Interestingly these two groups of mutants, each with similar properties, are largely located on opposite sides of the predicted TM10 helix. Single channel analyses revealed that mutation Q4863A dramatically altered the kinetics and apparent affinity of ryanodine interaction with single RyR2 channels and abolished the effect of ryanodol, an analogue of ryanodine, whereas the single channel conductance of the Q4863A mutant and its responses to caffeine, ATP, and Mg2+ were comparable to those of the wild type channels. Furthermore the effect of ryanodine on single Q4863A mutant channels was influenced by the transmembrane holding potential. Together these results suggest that the TM10 sequence and in particular the Q4863 residue constitute an important determinant of ryanodine interaction.  相似文献   
164.
There is general agreement that free radicals are involved in reperfusion injury. Electron paramagnetic resonance (EPR) spectroscopy can be considered as the more suitable technique to directly measure and characterize free radical generation during myocardial ischemia and reperfusion. There are essentially two approaches used in the detection of unstable reactive species: freezing technique and spin traps. The detection of secondary free radicals or ascorbyl free radicals during reperfusion might provide an index of oxidative stress. Spin trapping can also characterize nitric oxide. EPR spectroscopy can provide important data regarding redox state and free radical metabolism but ideally, the spin traps must not interfere with cell or organism function.  相似文献   
165.
Albeit Metarhizium anisopliae is the best-characterized entomopathogenic fungus, the role of some hydrolytic enzymes during host cuticle penetration has not yet been established. Three chitinase genes (chit1, chi2, chi3) from Metarhizium have already been isolated. To characterize the chitinase coded by the chit1 gene, we expressed the active protein (CHIT42) in Escherichia coli using a T7-based promoter expression vector. The recombinant protein, CHIT42, is active against glycol chitin and synthetic N-acetylglucosamine (GlcNAc) dimer and tetramer substrates. These activities suggest that the recombinant CHIT42 acts as an endochitinase.  相似文献   
166.
Abstract Organisms are often confronted with multiple enemy species. Defenses against different parasite species may be traded off against each other. However, if resistance is based on (potentially costly) general defense mechanisms, it may be positively correlated among parasites. In an experimental study, we confronted 19 clones from one Daphnia magna population with two bacterial and three microsporidian parasite species. All parasites were isolated from the same pond as the hosts. Host clones were specific in their susceptibility towards different parasite species, and parasite species were host-clone specific in their infectivity, spore production, and virulence, resulting in highly significant host-parasite interactions. Since the Daphnia 's resistance to different parasite species showed no obvious correlation, neither general defense mechanisms nor trade-offs in resistance explain our findings. None of the Daphnia clones were resistant to all parasite species, and the average level of resistance was quite similar among clones. This may reflect a cost of defense, so that the cumulative cost of being resistant to all parasite species might be too high.  相似文献   
167.
The role of RGS proteins on dopaminergic D2S receptor (D2SR) signalling was investigated in Chinese hamster ovary (CHO)-K1 cells, using recombinant RGS protein- and PTX-insensitive G alphao proteins. Dopamine-mediated [35S]GTPgammaS binding was attenuated by more than 60% in CHO-K1 D2SR cells coexpressing a RGS protein- and PTX-insensitive G(alphao)Gly184Ser:Cys351Ile protein versus cells coexpressing a similar amount of PTX-insensitive G alphaoCys351Ile protein. Dopamine-agonist-mediated Ca2+ responses were dependent on the coexpression with a G alphao Cys351Ile protein and were fully abolished upon coexpression with a G alphaoGly184Ser:Cys351Ile protein. These results suggest that interactions between the G alphao protein and RGS proteins are involved in efficient D2SR signalling.  相似文献   
168.
Poitras L  Jean S  Islam N  Moss T 《FEBS letters》2003,543(1-3):129-135
The p21-GTPase activated kinase, PAK1, and the mixed lineage kinase, MLK2, have been implicated in the activation of jun N-terminal kinase (JNK). However, the role of PAK1 in JNK activation is still not understood. Here we show that over-expression of the SH3-SH2 adapter Nck 'squelches' JNK activation but this squelching is relieved by over-expression of PAK1. In turn, PAK1 squelches activation of JNK by MLK2 and these kinases interact via their catalytic domains. The data suggest that PAK1 recruits MLK2 to an activated receptor via the adapter Nck, but cannot itself induce activation of the JNK cascade.  相似文献   
169.
Neuroglobin is a recently discovered member of the globin superfamily. Combined electron paramagnetic resonance and optical measurements show that, in Escherichia coli cell cultures with low O(2) concentration overexpressing wild-type mouse recombinant neuroglobin, the heme protein is mainly in a hexacoordinated deoxy ferrous form (F8His-Fe(2+)-E7His), whereby for a small fraction of the protein the endogenous protein ligand is replaced by NO. Analogous studies for mutated neuroglobin (mutation of E7-His to Leu, Val, or Gln) reveal the predominant presence of the nitrosyl ferrous form. After sonication of the cells wild-type neuroglobin oxidizes rapidly to the hexacoordinated ferric form, whereas NO ligation initially protects the mutants from oxidation. Flash photolysis studies of wild-type neuroglobin and its E7 mutants show high recombination rates (k(on)) and low dissociation rates (k(off)) for NO, indicating a high intrinsic affinity for this ligand similar to that of other hemoglobins. Since the rate-limiting step in ligand combination with the deoxy-hexacoordinated wild-type form involves the dissociation of the protein ligand, NO binding is slower than for the related mutants. Structural and kinetic characteristics of neuroglobin and its mutants are analyzed. NO production in rapidly growing E. coli cell cultures is discussed.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号